Skip to main content
Log in

Guanine-cytosine contents of the host and symbiont cDNA in a symbiotic coral

  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

Hermatypic (reef-building) corals harbor dinoflagellate endo-symbionts Symbiodinium spp. In studying gene expression in such symbiotic corals, problems arise regarding how to distinguish the coral and symbiont mRNA, and how to estimate their fractions in the mRNA population of the holobiont (symbiotic complex of the coral and Symbiodinium cells). In this study, these issues were addressed using juveniles of hermatypic coral Acropora tenuis in symbiosis with Symbiodinium cells of strain PL-TS-1. First, the guanine-cytosine (GC) contents were determined in expressed sequence tags (EST) from PL-TS-1 cells cultured in vitro and symbiont-free larvae of A. tenuis, and their average GC contents were found to be significantly different. The average GC content of the EST from the holobiont was much closer to that of A. tenuis larvae, suggesting that the majority (>90%) of mRNA isolated from the holobiont originated in the host. In protein-coding sequences, little overlap was observed between the GC-content distributions of PL-TS-1 cells and A. tenuis larvae. All of the coding sequences (n=59) found in the A. tenuis EST had GC contents below 0.5, whereas the GC content exceeded 0.5 in the majority (43/44) of coding sequences from the nuclear genome of PL-TS-1 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Veron JEN. Corals of the World, Australian Institute of Marine Science, Townsville, Queensland. 2000.

    Google Scholar 

  2. Trench RK. Dinoflagellates in non-parasitic symbioses. In: Taylor FJR (ed.). The Biology of Dinoflagellates. Blackwell Scientific Publications, Oxford, 1987; 530–570.

    Google Scholar 

  3. Karako S, Stambler N, Dubinsky N. The taxonomy and evolution of the zooxanthellae-coral symbiosis. In: Seckbach J (ed.), Symbiosis: Mechanisms and Model Systems. Kluwer Academic Publishers, Dordrecht. 2002; 541–557.

    Google Scholar 

  4. Baker AC. Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annu. Rev. Ecol. Evol. Syst. 2003; 34: 661–689.

    Article  Google Scholar 

  5. Coffroth MA, Santos SR. Genetic diversity of symbiotic dinoflagellates in the genus Symbiodinium. Protist 2005; 156: 19–34.

    Article  PubMed  CAS  Google Scholar 

  6. Stat M, Carter D, Hoegh-Guldberg O. The evolutionary history of Symbiodinium and scleractinian hosts — Symbiosis, diversity and the effect of climate change. Perspect. Plant Ecol. Evol. Syst. 2006; 8: 23–43.

    Article  Google Scholar 

  7. Muscatine L. The role of symbiotic algae in carbon and energy flux in reef corals. In: Dubinsky Z (ed.). Coral Reefs: Ecosystems of the World, Vol. 25. Elsevier, Amsterdam, 1990; 75–87.

    Google Scholar 

  8. Harrison PL, Wallace CC. Reproduction, dispersal and recruitment of scleractinian corals. In: Dubinsky Z (ed.). Coral Reefs: Ecosystems of the World, Vol. 25. Elsevier, Amsterdam. 1990, 133–207.

    Google Scholar 

  9. Brown BE. Coral bleaching: causes and consequences. Coral Reefs 1997; 16: S129-S138.

    Article  Google Scholar 

  10. Kushmaro A, Banin E, Loya Y, Stackebrandt E, Rosenberg E. Vibrio shiloi sp nov., the causative agent of bleaching of the coral Oculina patagonica. Int. J. Syst. Evol. Microbiol. (Pt 4) 2001; 51: 1383–1388.

    CAS  Google Scholar 

  11. Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nystrom M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J. Climate change, human impacts, and the resilience of coral reefs. Science 2003; 301: 929–933.

    Article  PubMed  CAS  Google Scholar 

  12. Watanabe T, Yuyama I, Yasumura S. Toxicological effects of biocides on symbiotic and aposymbiotic juveniles of the hermatypic coral Acropora tenuis. J. Exp. Mar. Biol. Ecol. 2006; 339: 177–188.

    Article  CAS  Google Scholar 

  13. Weis VM, Reynolds WS. Carbonic anhydrase expression and synthesis in the sea anemone Anthopleura elegantissima are enhanced by the presence of dinoflagellate symbionts. Physiol. Biochem. Zool. 1999; 72: 307–316.

    Article  PubMed  CAS  Google Scholar 

  14. Reynolds WS, Schwarz JA, Weis VM. Symbiosis-enhanced gene expression in cnidarian-algal associations: cloning and characterization of a cDNA, sym32, encoding a possible cell adhesion protein. Comp. Biochem. Physiol. Pt A 2000; 126: 33–44.

    Article  CAS  Google Scholar 

  15. Richter S, Furla P, Plantivaux A, Merle P-L, Allemand D. Symbiosis-induced adaptation to oxidative stress. J. Exp. Biol. 2005; 208: 277–285.

    Article  Google Scholar 

  16. Rodriguez-Lanetty M, Phillips WS, Weis VM. Transcriptome analysis of a cnidarian-dinoflagellate mutualism reveals complex modulation of host gene expression. BMC Genomics 2006; 7: Article No. 23.

    Google Scholar 

  17. Yuyama I, Hayakawa H, Endo H, Iwao K, Takeyama H, Maruyama T, Watanabe T. Identification of symbiotically expressed coral mRNAs using a model infection system. Biochem. Biophys. Res. Commun. 2005; 336: 793–798.

    Article  PubMed  CAS  Google Scholar 

  18. Barneah O, Benayahu Y, Weis V. Comparative proteomics of symbiotic and aposymbiotic juvenile soft corals. Mar. Biotechnol. 2006; 8: 11–16.

    Article  PubMed  CAS  Google Scholar 

  19. Mooers AØ, Holmes EC. The evolution of base composition and phylogenetic inference. Trends Ecol. Evol. 2000; 15: 365–369.

    Article  PubMed  Google Scholar 

  20. Watanabe T, Kii S, Tanaka J, Takishita K, Maruyama T. cDNA cloning, and phylogenetic and expression analyses of actin in symbiotic dinoflagellates (Symbiodinium spp.). J. Appl. Phycol. 2006; 18: 219–225.

    Article  CAS  Google Scholar 

  21. Zhang ZD, Cavalier-Smith T, Green BR. A family of selfish minicircular chromosomes with jumbled chloroplast gene fragments from a dinoflagellate. Mol. Biol. Evol. 2001; 18: 1558–1565.

    PubMed  CAS  Google Scholar 

  22. Zhang H, Bhattacharya D, Lin S. Phylogeny of dinoflagellates based on mitochondrial cytochrome b and nuclear small subunit rDNA sequence comparisons. J. Phycol. 2005; 41: 411–420.

    Article  CAS  Google Scholar 

  23. Saccone C, De Giorgi C, Gissi C, Pesole G, Reyes A. Evolutionary genomics in Metazoa: the mitochondrial DNA as a model system. Gene 1999; 238: 195–209.

    Article  PubMed  CAS  Google Scholar 

  24. Chaput H, Wang Y, Morse D. Polyadenylated transcripts containing random gene fragments are expressed in dinoflagellate mitochondria. Protist 2002; 153: 111–122.

    Article  PubMed  CAS  Google Scholar 

  25. Bachvaroff TR, Concepcion GT, Rogers CR, Herman EM, Delwiche CF. Dinoflagellate expressed sequence tag data indicate massive transfer of chloroplast genes to the nuclear genome. Protist 2004; 155: 65–78.

    Article  PubMed  CAS  Google Scholar 

  26. Hackett JD, Yoon HS, Soares MB, Bonaldo MF, Casavant TL, Scheetz TE, Nosenko T, Bhattacharya D. Migration of the plastid genome to the nucleus in a peridinin dinoflagellate. Curr. Biol. 2004; 14: 213–218.

    PubMed  CAS  Google Scholar 

  27. Zhang ZD, Green BR, Cavalier-Smith T. Single gene circles in dinoflagellate chloroplast genomes. Nature 1999; 400: 155–159.

    Article  PubMed  CAS  Google Scholar 

  28. Kortschak RD, Samuel G, Saint R, Miller DJ. EST analysis of the cnidarian Acropora millepora reveals extensive gene loss and rapid sequence divergence in the model invertebrates. Curr. Biol. 2003; 13: 2190–2195.

    Article  PubMed  CAS  Google Scholar 

  29. Kuo J, Chen MC, Lin CH, Fang LS. Comparative gene expression in the symbiotic and aposymbiotic Aiptasia pulchella by expressed sequence tag analysis. Biochem. Biophys. Res. Commun. 2004; 318: 176–186.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiki Watanabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kii, S.I., Tanaka, J. & Watanabe, T. Guanine-cytosine contents of the host and symbiont cDNA in a symbiotic coral. Fish Sci 73, 1362–1372 (2007). https://doi.org/10.1111/j.1444-2906.2007.01479.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1444-2906.2007.01479.x

Key Words

Navigation