Skip to main content

Advertisement

Log in

Conditions for the induction of some selective enzymes from Bacillus subtilis and their hydrolysis ability against mackerel and gracilar (asparagus, Gracilaria verrucosa)

  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

This study was conducted to optimize the cultivation conditions for Bacillus subtilis to produce proteases, amylases and cellulase, and to further investigate the hydrolysis ability against mackerel and asparagus. The extracellular enzymes from B. subtilis after 2 and 4 days incubation in a modified medium, containing 1% skim milk, 1% soya meal, 0.25% starch, 0.25% K2HPO4, 0.5% NaCl and 0.05% MgCl2 were collected for the hydrolysis of asparagus and minced mackerel, respectively. Except for the α,α-diphenyl-β-picrylhydrazyl (DPPH) scavenging ability of the hydrolyzed asparagus, the trolox equivalent antioxidation capacity and DPPH scavenging ability of both samples increased significantly (P<0.05) after 1 h hydrolysis and further increased during elongated hydrolysis at 50°C. Sodium dodecylsulfate-polyacrylamide gel electrophoresis indicated severe degradation of muscle proteins during hydrolysis. Changes in reducing sugar, soluble proteins and peptides before/after hydrolysis suggested the extracellular enzymes from B. subtilis could effectively hydrolyze the mackerel or asparagus, and subsequently improve their antioxidation ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Godfrey T, West S. Industrial Enzymology, 2nd edn Macmillan Publishers, New York, NY, 1996.

    Google Scholar 

  2. Su YC, Hwang SY. Studies on the alkaline protease produced by Bacillus sp. J. Chin. Biochem. Soc. 1973; 2: 1–10.

    CAS  Google Scholar 

  3. Hageman JH, Shankweiler GW, Wall PR, Franich K, Mccowan GW, Cauble SM, Grajeda J, Quinones C. Single chemically defined sporulation medium for Bacillus subtilis: growth, sporulation and extracellular protease production. J. Bacteriol. 1984; 160: 438–441.

    PubMed  CAS  Google Scholar 

  4. Ho FM, Chou CC. Growth and protease production by Bacillus species in crab canning waste liquor. J. Chin. Agric. Chem. Soc. 1988; 26: 379–388.

    CAS  Google Scholar 

  5. Liebs P, Riedel K, Graba JP, Scharapel D, Tischler U. Formation of some extracellular enzymes during the exponential growth of Bacillus subtilis. Folia Microbiol. 1988; 33: 88–95.

    Article  CAS  Google Scholar 

  6. Sheehan SM, Switzer RL. Intracellular serine protease activity from Bacillus subtilis. Arch. Microbiol 1991; 156: 186–191.

    Article  PubMed  CAS  Google Scholar 

  7. Anwar A. Saleemuddin M. Alkaline proteases: a review. Bioresour. Technol. 1998; 64: 175–183.

    CAS  Google Scholar 

  8. Kumar CG, Takagi H. Microbial alkaline proteases: from a bioindustrual viewpoint. Biotechnol. Adv. 1999; 17: 561–594.

    Article  PubMed  CAS  Google Scholar 

  9. Yang JK, Shih IL, Tzeng YM, Wang SL. Production and purification of protease from Bacillus subtilis that can deproteinize crustacean wastes. Enzyme Microb. Technol. 2000; 26: 406–413.

    Article  PubMed  CAS  Google Scholar 

  10. Mawadza C, Hatti-Kaul R, Zvauya R, Mattiasson B. Purification and characterization of cellulases produced by two Bacillus strains. J. Biotechnol. 2000; 83: 177–187.

    Article  PubMed  CAS  Google Scholar 

  11. Takasaki Y. Pullulanase-amylase complex enzyme from Bacillus subtilis. Agric. Biol. Chem. 1987; 51: 9–16.

    CAS  Google Scholar 

  12. Yamaguchi N, Naito S, Yokoo Y, Fujimaki M. Application of protein hydrolyzate to biscuit as antioxidant. J. Jpn. Soc. Food Sci. Technol. 1980; 27: 56–59.

    CAS  Google Scholar 

  13. Pratt DE. Water soluble antioxidant activity in soybeans. J. Food. Sci. 1972; 37: 322–323.

    Article  Google Scholar 

  14. Yukami S. Utoxidation of sodium linoleate in a protein solution. Agric. Biol. Chem. 1972; 36: 871–874.

    CAS  Google Scholar 

  15. Yamamoto Y, Kato E, Ando A. Increased antioxidative activity of ovalbum in by heat treating in an emulsion of linoleic acid. Biosci. Biotechnol. Biochem. 1996; 60: 1430–1433.

    Article  CAS  Google Scholar 

  16. Rhee KS, Ziprin YA, Rhee KC. Water-soluble antioxidant activity of oilseed protein derivatives in model lipid peroxidation systems of meat. J. Food Sci. 1979; 44: 1132–1135.

    Article  CAS  Google Scholar 

  17. Iwami K, Hattori M, Ibuki F. Prominent antioxidant effect of wheat gliadine on linoleate peroxidation in powder model systems at high water activity. J. Agric. Food Chem. 1987; 35: 628–631.

    Article  CAS  Google Scholar 

  18. Yamaguchi N, Yokko Y, Fujimaki M. Studies on antioxidative activities of amino compounds on fats and oils: Part III. Antioxidative activities of soybean protein hydrolyzates and synergistic effect of hydrolysate on tocopherol. Nippon Shokuhin Kogyo Gakkaishi 1975; 22: 431–435.

    Google Scholar 

  19. Wang JY, Fujimoto K, Miyazawa T, Endo Y. Antioxidative mechanism of maize zein in powder model systems against methyl linoleate. Effect of water activity and coexistence of antioxidants. J. Agric. Food Chem. 1991; 39: 351–355.

    Article  CAS  Google Scholar 

  20. Taylor MJ, Richardson T. Antioxidant activity of amino acids bound to Trolox-C. J. Am. Oil Chem. Soc. 1981; 58: 622–626.

    Article  CAS  Google Scholar 

  21. Gopala KAG, Prabhakar JV. Antioxidant efficacy of amino acids in methyl linoleate at different relative humidities. J. Am. Oil Chem. Soc. 1994; 71: 645–647.

    Article  Google Scholar 

  22. Chen HM, Muramoto K, Yamauchi F. Structural analysis of antioxidative peptides from soybean β-conglycinin. J. Agric. Food Chem. 1995; 43: 574–578.

    Article  CAS  Google Scholar 

  23. Zioudrou C, Streaty RA, Klee WA. Opioid peptides derived from food proteins. J. Biol. Chem. 1979; 254: 2446–2449.

    PubMed  CAS  Google Scholar 

  24. Loukas S, Varoucha D, Zioudrou C, Streaty RA, Klee WA. Opioid activities and structures of α-casein-derived exorphins. Biochemistry 1983; 22: 4567–4573.

    Article  PubMed  CAS  Google Scholar 

  25. Lee YS, Noguchi T, Naito H. Intestinal absorption of calcium in rats given diets containing casein or amino acid mixture: the role of casein phosphopeptides. Br. J. Nutr. 1983; 49: 67–76.

    Article  PubMed  CAS  Google Scholar 

  26. Yashiro A, Oda S, Sugano M. Hypocholesterolemic effect of soybean protein in rats and mice after peptic digestion. J. Nutr. 1985; 115: 1325–1336.

    PubMed  CAS  Google Scholar 

  27. Astawan M, Wahyuni M, Yasuhara T, Yamada K, Tadokoro T, Maekawa A. Effects of angiotensin I-converting enzyme inhibitory substances derived from Indonesian drived-salted fish on blood pressure of rats. Biosci. Biotechn Biochem. 1995; 59: 425–429.

    Article  CAS  Google Scholar 

  28. Anisimov VN, Arutjunyan AV, Khavinson VK. Effects of pineal peptide preparation. Epithalamin on free-radical processes in humans and animals. Neuro. Endocrinol. Lett. 2001; 22: 9–18.

    PubMed  CAS  Google Scholar 

  29. Saiga A, Tanabe S, Nishimura T. Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. J. Agric. Food Chem. 2003; 51: 3661–3667.

    Article  PubMed  CAS  Google Scholar 

  30. Saito K, Jin DH, Ogawa T, Muramoto K, Hatakeyama E, Yasuhara T, Nokihara K. Antioxidative properties of tripeptide libraries prepared by the combinatorial chemistry. J. Agric. Food Chem. 2003; 51: 3668–3674.

    Article  PubMed  CAS  Google Scholar 

  31. Kim SK, Kim YT, Byun HG, Nam KS, Joo DS, Shahidi F. Isolation and characterization of antioxidative peptides from gelatin hydrolysate of Alaska pollack skin. J. Agric. Food Chem. 2001; 49: 1984–1989.

    Article  PubMed  CAS  Google Scholar 

  32. Kitada M, Horikoshi K. Alkaline proteinase production from methyl acetate by alkalophilic Bacillus sp. J. Ferment. Technol. 1976; 54: 383–392.

    CAS  Google Scholar 

  33. Huang MS, Chen HC. Relationship between growth and pigmentation of Cellulomonas flavigena NTOU 1. J. Chin. Nutr. Soc. 1994; 19: 173–189.

    CAS  Google Scholar 

  34. Bernfeld P. Amylase α and β. Methods Enzymol. 1955; 1: 149.

    Article  CAS  Google Scholar 

  35. Anson ML. The estimation of pepsin, trypsin, papain and cathepsin with haemoglobin. J. Gen. Physiol. 1938; 22: 79–89.

    Article  CAS  PubMed  Google Scholar 

  36. McCarthy JF, Pembroke JT. The amylase activity associated with Cellulomonas flavigena is cell associated and inducible. Biotechnol. Lett. 1988; 10: 285–288.

    Article  CAS  Google Scholar 

  37. Konosu S, Watanabe K, Shimizu T. Distribution of nitrogenous constituents in the muscle extracts eight speciese of fish. Nippon Suisan Gakkaishi 1974; 40: 909–914.

    CAS  Google Scholar 

  38. Klement JT, Cassens RG, Fennema OR. The association of protein solubility with physical properties in a fermented sausage. J. Food Sci. 1973; 38: 1128–1131.

    Article  Google Scholar 

  39. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with Folin phenol reagent. J. Biol. Chem. 1951; 193: 265–275.

    PubMed  CAS  Google Scholar 

  40. Church FC, Swaisgood HE, Porter DH, Catignani GL. Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. J. Dairy Sci. 1983; 66: 1219–1227.

    Article  CAS  Google Scholar 

  41. Laemmli UK. Cleavage of structural proteins during the assembly of the head bacteriophage T4. Nature. 1970; 277: 680–685.

    Article  Google Scholar 

  42. Neuhoff V, Arold N, Taube D, Ehrhardt W. Improved staining of proteins in polyacrylaminde at nanogram sensitivity using coomassie Brilliant Blue G-250 and R-250. Electrophoresis 1988; 9: 255–262.

    Article  PubMed  CAS  Google Scholar 

  43. Shimada K, Fujikawa K, Yahara K, Nakamura T. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 1992; 40: 945–948.

    Article  CAS  Google Scholar 

  44. Miller NJ, Riceevans C, Davies MJ, Gopinathan V, Milner A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. 1993; 84: 407–412.

    PubMed  CAS  Google Scholar 

  45. Wu SC, Pan CL. Preparation of algal-oligosaccharide mixtures by bacterial agarases and their antioxidative properties. Fish. Sci. 2004; 70: 1164–1173.

    Article  CAS  Google Scholar 

  46. Haijin M, Jiang X, Guan H. A κ-carrageenan derived oligosaccharide prepared by enzymatic degradation containing anti-tumor activity. J. Appl. Phycol. 2003; 15: 297–303.

    Article  Google Scholar 

  47. Wang J, Jiang X, Mou H, Guan H. Anti-oxidation of agar oligosaccharides produced by agarase from a marine bacterium. J. Appl. Phycol. 2004; 16: 333–340.

    Article  CAS  Google Scholar 

  48. Gao Y, Shan AS. Effects of different oligosaccharides on performance and availability of nutrients in broilers. J. Northeast Agric. Univ. 2004; 11: 37–41.

    CAS  Google Scholar 

  49. Wang J, Mou H, Jiang X, Guan H. Characterization of a novel β-agarase from marine Alteromonas sp. SY37-12 and its degrading products. Appl. Microbiol. Biotechn 2006; 71: 833–839.

    Article  CAS  Google Scholar 

  50. Ruperez P, Ahrazem O, Leal JA. Potential antioxidant capacity of sulfated polysaccharides from the edible marine brown seaweed Fucus vesiculosus. J. Agric. Food Chem. 2002; 50: 840–845.

    Article  PubMed  CAS  Google Scholar 

  51. Xue C, Fang Y, Lin H, Chen L, Li Z, Deng D, Lu C. Chemical characters and antioxidative properties of sulfated polysaccharides from Laminaria japonica. J. Appl. Phycol. 2001; 13: 67–70.

    Article  CAS  Google Scholar 

  52. Zhang Q, Yu P, Li Z, Zhang H, Xu Z, Li P. Antioxidant activities of sulfated polysaccharide fractions from Porphyra haitanesis. J. Appl. Phycol. 2003; 15: 305–310.

    Article  CAS  Google Scholar 

  53. Zhou LZ, Yang XL, Zhou JY, Xu HB. Advances of the antioxidative activities research of polysaccharides. Chin. J. Biochem. Pharm. 2002; 23: 210–212.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shann -Tzong Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, L.J., Wu, P.C., Cheung, H.H. et al. Conditions for the induction of some selective enzymes from Bacillus subtilis and their hydrolysis ability against mackerel and gracilar (asparagus, Gracilaria verrucosa). Fish Sci 73, 713–723 (2007). https://doi.org/10.1111/j.1444-2906.2007.01385.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1444-2906.2007.01385.x

Key words