Skip to main content
Log in

Water solubilization of glycated carp and scallop myosin rods, and their soluble state under physiological conditions

  • Published:
Fisheries Science Aims and scope Submit manuscript

An Erratum to this article was published on 01 May 2007

Abstract

Myosin rod regions prepared from carp Cyprinus carpio dorsal muscle and scallop Pecten yessoensis striated adductor muscle were non-enzymatically reacted with glucose (glycation), and the changes in the filament-forming ability and the size distribution of the rod filaments during glycation were examined to discuss the molecular mechanism of the water solubilization of myosin molecules under physiological conditions. Both myosin rods became solubilized in 0.1 M NaCl (pH 7.5), and their filament-forming ability was weakened with the progress of glycation. The size of the insoluble filaments of the myosin rods was diminished with an increase in the solubility under physiological conditions, and glycated myosin rods finally existed as monomers in 0.1 M NaCl (pH 7.5). These results supported the hypothesis that the water solubilization of myosin by glycation was caused by the loss of the filament-forming ability of myosin molecules. Water solubilization seemed to occur through the same molecular mechanism regardless of the species, whereas the scallop myosin rods required a much larger number of lysine residues reacted with glucose to collapse the insoluble filaments, in contrast to the carp myosin rods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nagaraj RH, Sell DR, Prabhakaram M, Ortwerth BJ, Monnier VM. High correlation between pentosidine protein corsslinks and pigmentation implicates ascorbate oxidation in human lens senescence and cataractogenesis. Proc. Natl Acad. Sci. USA 1991; 88: 10257–10261.

    Article  PubMed  CAS  Google Scholar 

  2. Day JF, Thornburg RW, Thorpe SR, Baynes JW. Nonenzymatic glucosylation of rat albumin. Studies in vitro and in vivo. J. Biol. Chem. 1979; 254: 9394–9400.

    PubMed  CAS  Google Scholar 

  3. Hadley JC, Meek KM, Malik NS. Glycation changes the charge distribution of type I collagen fibrils. Glycoconj. J. 1998; 15: 835–840.

    Article  PubMed  CAS  Google Scholar 

  4. Lambotte O, Cacoub P, Costedoat N, Le Moel G, Amoura Z, Piette JC. High ferritin and low glycosylated ferritin may also be a marker of excessive macrophage activation. J. Rheumatol. 2003; 30: 1027–1028.

    PubMed  CAS  Google Scholar 

  5. Wang XY, Bucala R, Milne R. Epitopes close to the apolip oprotein B low density lipoprotein receptor-binding site are modified by advanced glycation end products. Proc. Natl Acad. Sci. USA 1998; 95: 7643–7647.

    Article  PubMed  CAS  Google Scholar 

  6. Weed AG, Pope B. Studies on the chymotryptic digestion of myosin. J. Mol. Biol. 1977; 111: 129–157.

    Article  Google Scholar 

  7. Huxley HE. Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle. J. Mol. Biol. 1963; 7: 281–308.

    CAS  Google Scholar 

  8. Watanabe H, Ogasawara M, Suzuki N, Nishizawa N, Ambo K. Glycation of myofibrillar protein in aged rats and mice. Biosci. Biotechnol. Biochem. 1992; 56: 1109–1112.

    Article  CAS  Google Scholar 

  9. Syrovy I, Hodny Z. Non-enzymatic glycosilation of myosin: effect of diabetes and aging. Gen. Physiol. Biophys. 1992; 11: 301–307.

    PubMed  CAS  Google Scholar 

  10. Syrovy I, Hodny Z. In vitro non-enzymatic glycosylation of myofibrillar proteins. Int. J. Biochem. 1993; 25: 941–946.

    Article  PubMed  CAS  Google Scholar 

  11. Ramamurthy B, Hook P, Jones AD, larsson L. Changes in myosin structure and function in response to glycation. FASEB J. 2001; 15: 2515–2422.

    Article  Google Scholar 

  12. Saeki H, Inoue K. Improved solubility of carp myofibrillar proteins in low ionic strength medium by glycosylation. J. Agric. Food Chem. 1997; 45: 3419–3422.

    Article  CAS  Google Scholar 

  13. Sato R, Sawabe T, Kishimura H, Hayashi K, Saeki H. Preparation of neoglycoprotein from carp myofibrillar protein and alginate oligosaccharide: improved solubility in low ionic strength medium. J. Agric. Food Chem. 2000; 48: 17–22.

    Article  PubMed  CAS  Google Scholar 

  14. Tanabe M, Saeki H. Effect of Maillard reaction with glucose and ribose on solubility at low ionic strength and filament-forming ability of fish myosin. J. Agric. Food Chem. 2001; 49: 3403–3407.

    Article  PubMed  CAS  Google Scholar 

  15. Katayama S, Haga Y, Saeki H. Loss of filament-forming ability of myosin by non-enzymatic glycosylation and its molecular mechanism. FEBS Lett. 2004; 575: 9–13.

    Article  PubMed  CAS  Google Scholar 

  16. Kato S, Konno K. Filament-forming domain of carp dorsal myosin rod. J. Biochem. 1993; 113: 43–47.

    PubMed  CAS  Google Scholar 

  17. Gornall AG, Bardwill CJ, David MM. Determination of serum proteins by means of the biuret reaction. J. Biol. Chem. 1949; 177: 751–766.

    PubMed  CAS  Google Scholar 

  18. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227: 680–685.

    Article  PubMed  CAS  Google Scholar 

  19. Medina-Hernandez MJ, Guarcia-Alvarez-Coque MC. Available lysine in protein, assay using o-phthalaldehyde/Nacetyl-L-cysteine spectrophotometric method. J. Food Sci. 1992; 57: 503–505.

    Article  CAS  Google Scholar 

  20. Perrie WT, Perry SV. An electrophoretic study of the low molecular weight components of myosin. Biochem. J. 1970; 119: 31–38.

    PubMed  CAS  Google Scholar 

  21. Itzhaki RF, Gill DM. A micro-biuret method for estimating proteins. Anal. Biochem. 1964; 9: 401–410.

    Article  PubMed  CAS  Google Scholar 

  22. Matsuura M, Konno K, Arai K. Thick filaments of fish myosin and its actin activated Mg-ATPase. Comp. Biochem. Physiol. 1988; 90B: 803–808.

    CAS  Google Scholar 

  23. McLachlan AD, Karn J. Periodic charge distributions in the myosin rod amino acid sequence match cross-bridge spacings in muscle. Nature 1982; 299: 226–231.

    Article  PubMed  CAS  Google Scholar 

  24. Saeki H, Tanabe M. Change in solubility of carp myofibrillar protein by modifying lysine residue with ribose. Fish. Sci. 1999; 65: 967–968.

    CAS  Google Scholar 

  25. Sato R, Katayama S, Sawabe T, Saeki H. Stability and emulsion-forming ability of water-soluble fish myofibrillar protein prepared by conjugation with alginate oligosaccharide. J. Agric. Food Chem. 2003; 51: 4376–4381.

    Article  PubMed  CAS  Google Scholar 

  26. Kato S, Konno K. Filament formation of carboxyl- and amino-group-modified carp myosin rod. Fish. Sci. 2000; 66: 124–129.

    Article  CAS  Google Scholar 

  27. Saeki H. Japan Unexamined Patent Publication, P2003-169634. 2003.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Saeki.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1111/j.1444-2906.2007.01424.x.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katayama, S., Saeki, H. Water solubilization of glycated carp and scallop myosin rods, and their soluble state under physiological conditions. Fish Sci 73, 446–452 (2007). https://doi.org/10.1111/j.1444-2906.2007.01353.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1444-2906.2007.01353.x

Key words

Navigation