Skip to main content
Log in

Transcriptional regulation of the Na+-NADH:quinone oxidoreductase gene, nqr, in Vibrio anguillarum, a fish pathogen, in the stationary phase

  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

Vibrio anguillarum kills various kinds of fish over a range of salinities from sea water to fresh water, and causes serious damage to aquaculture systems. In this study, the transcriptional regulation of the Na+-NADH:quinone oxidoreductase (Na+-NQR) operon in V. anguillarum from the logarithmic to stationary phases was investigated. Cloning of the Na+-NQR operon revealed a 7 kb nucleotide sequence composed of six open reading frames with amino acid sequence identity of more than 80% with other Vibrio species. Two promoters, nqrP1 and nqrP2, were identified in the region upstream of the nqrA gene using an S1 nuclease assay. The nqrP1 promoter was constitutively activated throughout the logarithmic to stationary phases and possessed-10 (5′-TAGACT-3′) and −35 (5′-ATGGCA-3′) sequences, which were similar to the consensus sequence of Escherichia coli. On the other hand, the nqrP2 promoter was activated only at the stationary phase and had only a −10 (5′-CATACT-3′) and not a −35 sequence. These results suggest that nqrP2, which works specifically in the stationary phase, contributes to starvation-survival in V. anguillarum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Larsen JL. Vibrio anguillarum: influence of temperature, pH, NaCl concentration and incubation time on growth. J. Appl. Bacteriol. 1984; 57: 237–246.

    PubMed  CAS  Google Scholar 

  2. Fujiwara-Nagata E, Eguchi M. Significance of Na+ in the fish pathogen, Vibrio anguillarum, under energy depleted condition. FEMS Microbiol. Lett. 2004; 234: 163–167.

    Article  PubMed  CAS  Google Scholar 

  3. Dimroth P. Sodium ion transport decarboxylases and other aspects of sodium ion cycling in bacteria. Microbiol. Rev. 1987; 51: 320–340.

    PubMed  CAS  Google Scholar 

  4. Dimroth P. Primary sodium ion translocating, enzymes. Biochim. Biophys. Acta 1997; 1318: 11–51.

    Article  PubMed  CAS  Google Scholar 

  5. Nakamura T, Kawasaki S, Unemoto T. Roles of K+ and Na+ in pH homeostasis and growth of the marine bacterium Vibrio alginolyticus. J. Gen. Microbiol. 1992; 138: 1271–1276.

    PubMed  CAS  Google Scholar 

  6. Häse CC, Barquera B. Role of sodium bioenergetics in Vibrio cholerae. Biochim. Biophys. Acta 2001; 1505: 169–178.

    Article  PubMed  Google Scholar 

  7. Häse CC, Fedorova ND, Galperin MY, Dibrov PA. Sodium ion cycle in bacterial pathogens: evidence from crossgenome comparisons. Microbiol. Mol. Biol. Rev. 2001; 65: 353–370.

    Article  PubMed  Google Scholar 

  8. McCarter LL. Polar flagellar motility of the Vibrionaceae. Microbiol. Mol. Biol. Rev. 2001; 65: 445–462.

    Article  PubMed  CAS  Google Scholar 

  9. Fujiwara-Nagata E, Kogure K, Kita-Tsukamoto K, Wada M, Eguchi M. Characteristics of Na+-dependent respiratory chain in Vibrio anguillarum, a fish pathogen, in comparison with other marine Vibrios. FEMS Microbiol. Ecol. 2003; 44: 225–230.

    Article  CAS  Google Scholar 

  10. Kogure K. Bioenergetics of marine bacteria. Curr. Opin. Biotechnol. 1998; 9: 278–282.

    Article  PubMed  CAS  Google Scholar 

  11. Wada M, Kogure K. Membrane bioenergetics in reference to marine bacterial culturability. In: Colwell RR, Grimes DJ (eds). Nonculturable Microorganisms in the Environment. ASM Press, Washington, DC 2000; 47–55.

    Google Scholar 

  12. Kato S, Yumoto I. Detection of the Na+-translocating NADH-quinone reductase in marine bacteria using a PCR technique. Can. J. Microbiol. 2000; 46: 325–332.

    Article  PubMed  CAS  Google Scholar 

  13. Hayashi M, Nakayama Y, Unemoto T. Recent progress in the Na+-translocating NADH-quinone reductase from the marine Vibrio alginolyticus. Biochim. Biophys. Acta 2001; 1505: 37–44.

    Article  PubMed  CAS  Google Scholar 

  14. Siegele DA, Almiron M, Kolter R. Approaches to the study of survival and death in stationary-phase Escherichia coli. In: Kjelleberg S (ed.). Starvation in Bacteria. Plenum Press, New York. 1993; 151–169.

    Google Scholar 

  15. Östling J, Holmquist L, Flärdh K, Svenblad B, Jouper-jaan Å, Kjelleberg S. Starvation and recovery of Vibrio. In: Kjelleberg S (ed.). Starvation in Bacteria. Plenum Press, New York. 1993; 103–127.

    Google Scholar 

  16. Nyström T. Translational fidelity, protein oxidation, and senescence: lessons from bacteria. Ageing Res. Rev. 2002; 1: 693–703.

    Article  PubMed  Google Scholar 

  17. Nyström T. Conditional senescence in bacteria: death of the immortals. Mol. Microbiol. 2003; 48: 17–23.

    Article  PubMed  Google Scholar 

  18. Garcia T, Otto K, Kjelleberg S, Nelson DR. Growth of Vibrioanguillarum in salmon intestinal mucus. Appl. Environ. Microbiol. 1997; 63: 1034–1039.

    PubMed  CAS  Google Scholar 

  19. Denkin SM, Nelson DR. Induction of protease activity in Vibrio anguillarum by gastrointestinal mucus. Appl. Environ. Microbiol. 1999; 65: 3555–3560.

    PubMed  CAS  Google Scholar 

  20. Eguchi M, Fujiwara-Nagata E, Miyamoto N. Physiological state of Vibrio anguillarum, a fish pathogen, under starved and low-osmotic environments. Microbes Environ. 2003; 18: 160–166.

    Article  Google Scholar 

  21. Eguchi M, Nishikawa T, MacDonald K, Cavicchioli R, Gottschal JC, Kjelleberg S. Responses to stress and nutrient availability by the marine ultramicrobacterium Sphingomonas sp. strain RB2256. Appl. Environ. Microbiol. 1996; 62: 1287–1294.

    PubMed  CAS  Google Scholar 

  22. Liu Y, Mitsukawa N, Oosumi T, Whittier RF. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant. J. 1995; 8: 457–463.

    Article  PubMed  CAS  Google Scholar 

  23. Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York. 2001; 1.31–1.38.

    Google Scholar 

  24. Aiba H. Autoregulation of the Escherichia coli crp gene: CRP is a transcriptional repressor of its own gene. Cell 1983; 32: 141–149.

    Article  PubMed  CAS  Google Scholar 

  25. Maxam AM, Gilbert W. A new method for sequencing DNA. Proc. Natl. Acad. Sci. USA 1977; 74: 560–564.

    Article  PubMed  CAS  Google Scholar 

  26. Kato A, Tanabe H, Utsumi R. Molecular characterization of the PhoP-PhoQ two-component system in Escherichia coli K-12: identification of extracellular Mg2+-responsive promoters. J. Bacteriol. 1999; 181: 5516–5520.

    PubMed  CAS  Google Scholar 

  27. Beattie P, Tan K, Bourne RM, Leach D, Rich PR, Ward FB. Cloning and sequencing of four structural genes for the Na+-translocating NADH-ubiquinone oxidoreductase of Vibrio alginolyticus. FEBS Lett. 1994; 356: 333–338.

    Article  PubMed  CAS  Google Scholar 

  28. Hayashi M, Hirai K, Unemoto T. Cloning of the Na+-translocating NADH-quinone reductase gene from the marine bacterium Vibrio alginolyticus and the expression of the β-subunit in Escherichia coli. FEBS Lett. 1994; 356: 330–332.

    Article  PubMed  CAS  Google Scholar 

  29. Hayashi M, Hirai K, Unemoto T. Sequencing and the alignment of structural genes in the nqr operon encoding the Na+-translocating NADH-quinone reductase Vibrio alginolyticus. FEBS Lett. 1995; 363: 75–77.

    Article  PubMed  CAS  Google Scholar 

  30. Nakayama Y, Hayashi M, Unemoto T. Identification of six subunits constituting Na+-translocating NADH-quinone reductase from the marine Vibrio alginolyticus. FEBS Lett. 1998; 422: 240–242.

    Article  PubMed  CAS  Google Scholar 

  31. Tokuda H, Unemoto T. Na+ is translocated at NADH:quinone oxidoreductase segment in the respiratory chain of Vibrio alginolyticus. J. Biol. Chem. 1984; 259: 7785–7790.

    PubMed  CAS  Google Scholar 

  32. Tsuchiya T, Shinoda S. Respiration-driven Na+ pump and Na+ circulation in Vibrio parahaemolyticus. J. Bacteriol. 1985; 162: 794–798.

    PubMed  CAS  Google Scholar 

  33. Zhou W, Bertsova YV, Feng B, Tsatsos P, Verkhovskaya ML, Gennis RB, Bogachev AV, Barquera B. Sequencing and preliminary characterization of the Na+-translocating NADH: ubiquinone oxidoreductase from Vibrio harveyi. Biochemistry 1999; 38: 16 246–16 252.

    CAS  Google Scholar 

  34. Bogachev AV, Bertsova YV, Barquera B, Verkhovsky MI. Sodium-dependent steps in the redox reactions of the Na+-motive NADH:quinone oxidoreductase from Vibrio harveyi. Biochemistry 2001; 40: 7318–7323.

    Article  PubMed  CAS  Google Scholar 

  35. Barquera B, Hellwig P, Zhou W, Morgan JE, Häse CC, Gosink KK, Nilges M, Bruesehoff PJ, Roth A, Lancaster CRD, Gennis RB. Purification and characterization of the recombinant Na+-translocating NADH:quinone oxidoreductase from Vibrio cholerae. Biochemistry 2002; 41: 3781–3789.

    Article  PubMed  CAS  Google Scholar 

  36. Hayashi M, Unemoto T. Subunit component and their roles in the sodium-transport NADH:quinone reductase of a marine bacterium, Vibrio alginolyticus. Biochim. Biophys. Acta 1987; 890: 47–54.

    Article  CAS  Google Scholar 

  37. Hayashi M, Unemoto T. Characterization of the Na+-dependent respiratory chain NADH:quinone oxidoreductase of the marine bacterium, Vibrio alginolyticus, in relation to the primary Na+ pump. Biochim. Biophys. Acta 1984; 767: 470–478.

    Article  CAS  Google Scholar 

  38. Unemoto T, Hayashi M. Sodium-transport NADH-quinone reductase of a marine Vibrio alginolyticus. J. Bioenerg. Biomembr. 1989; 21: 649–662.

    Article  PubMed  CAS  Google Scholar 

  39. Mujacic M, Baneyx F. Regulation of Escherichia coli hchA, a stress-inducible gene encoding molecular chaperone Hsp31. Mol. Microbiol. 2006; 60: 1576–1589.

    Article  PubMed  CAS  Google Scholar 

  40. Tanaka K, Takayanagi Y, Fujita N, Ishihama A, Takahashi H. Heterogeneity of the principal σfactor in Escherichia coli: the rpoS gene product, σ38, is a second principal σ factor of RNA polymerase in stationary-phase Escherichia coli. Proc. Natl. Acad. Sci. USA 1993; 90: 3511–3515.

    Article  PubMed  CAS  Google Scholar 

  41. Jishage M, Ishihama A. A stationary phase protein in Escherichia coli with binding activity to the major σ subunit of RNA polymerase. Proc. Natl. Acad. Sci. USA 1998; 95: 4953–4958.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuru Eguchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujiwara-Nagata, E., Eguchi, Y., Utsumi, R. et al. Transcriptional regulation of the Na+-NADH:quinone oxidoreductase gene, nqr, in Vibrio anguillarum, a fish pathogen, in the stationary phase. Fish Sci 73, 348–355 (2007). https://doi.org/10.1111/j.1444-2906.2007.01341.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1444-2906.2007.01341.x

Key Words

Navigation