Skip to main content
Log in

Genetic identification of native populations of fluvial white-spotted charr Salvelinus leucomaenis in the upper Tone River drainage

  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

Stocking of exogenous, hatchery-reared white-spotted charr Salvelinus leucomaenis has been conducted throughout much of their range in Honshu Island, Japan, to increase angling opportunities. Although the native char populations are thought to have declined because of hybridization with introduce fish, their distribution and genetic status have been uncertain. Fine population structures of charr in the upper Tone River drainage were examined using mitochondrial DNA and microsatellite analyses so as to clarify the presence of native populations. One common mtDNA haplotype was detected in all populations in the Ohashi River and Watarase River, and four and one tributary populations were monomorphic for such haplotypes, respectively. However, several haplotypes, considered to have originated from stocked hatchery fish, were observed in the stocked and the remaining populations. Judging from the genetic integrity over a fine geographic scale, the former were considered as indicative of native populations and the latter as admixtures with hatchery fish. Comparisons of genetic diversity, deviations from the Hardy-Weinberg equilibrium, principal component analysis, and relatedness estimations based on microsatellite DNA can also provide evidence for distinguishing native populations from those influenced by hatchery fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tachikawa W, Honjo T. Stocking in rivers. In: Zenkoku koshou kasen youshoku kenkyukai (eds), Studies in Culture of Trout. Midori-shobo. Tokyo, 1976; 123–137 (in Japanese).

    Google Scholar 

  2. Waples RS. Genetic interactions between hatchery and wild Salmonids: lessons from the Pacific Northwest. Can. J. Aquat. Sci. 1991; 48 (Suppl. 1): 124–133.

    Google Scholar 

  3. Ferguson A, Taggart JB, Prodohl PA, McMeel O, Thompson C, Stone C, McGinnity P, Hynes RA. Population and conservation. J. Fish Biol. 1995; 47 (Suppl. A): 103–126.

    Article  CAS  Google Scholar 

  4. Kato K. Masu-salmon Amago-salmon, Ecology and Fishing. Tsuribito-sha, Tokyo. 1991, (in Japanese).

    Google Scholar 

  5. Yamamoto S. Japanese Charr, Ecology and Fishing. Tsuribito-sha Tokyo. 1991. (in Japanese).

    Google Scholar 

  6. Nakamura T. An ecological role of tributaries in Japanese charr. In: Mori S (ed.). Freshwater Environment from a Viewpoint of Fish Ecology (Sakana kara mita mizu kankyo). Shinzan-Sha Sci-Teck, Tokyo 1998: 177–187 (in Japanese).

    Google Scholar 

  7. Nakamura T. Estimation of the distribution of genetically pure populations of the Japanese charr by inquiring survey. J. Jpn Soc. Erosion Control 2001: 53: 3–9.

    Google Scholar 

  8. Leary RF, Gould WR, Sage GK. Success of basibranchial teeth in indicating pure populations of rainbow trout and failure to indicate pure populations of westslope cutthroat trout. N. Am. J. Fish. Manage. 1996; 16: 210–213.

    Article  Google Scholar 

  9. Weigel DE, Peterson JT, Spruell P. A model using phenotypic characteristics to detect introgressive hybridization in wild westslope cutthroat trout and rainbow trout. Trans. Am. Fish. Soc. 2002; 131: 389–403.

    Article  Google Scholar 

  10. Sheehan TF, Kocik JF, Cadrin SX, Legault CM, Atkinson E, Bengtson D. Marine growth and morphometrics for three populations of Atlantic salmon from Eastern Maine. USA Trans. Am. Fish. Soc. 2005; 134: 775–788.

    Article  Google Scholar 

  11. Takeda K, Onodera S, Yoshiyasu K. Salvelinus leucomaenis with atypical color patterns, collected in the Mogami and Nikko River systems, Yamagata Prefecture, Japan. Jpn. J. Ichthyol. 1978; 25: 58–64.

    Google Scholar 

  12. Yamamoto S, Kohara M, Sawamoto Y, Tsukisaka M. Variation of spots in Japanese char Salvelinus leucomaenis in the rivers of Nagano prefecture. Japan. Bull. Nagano Pref. Fish. Exp. Stn. 2000; 4: 16–23.

    Google Scholar 

  13. Nakamura T. Meristic and morphometric variations in fluvial Japanese charr between river systems and among tributaries of a river system. Env. Biol. Fish. 2003; 66: 133–141.

    Article  Google Scholar 

  14. Nakajima M, Fujio Y. Genetic differentiation among local populations of Japanese char Salvelinus leucomaenis. Fish. Sci. 1995; 61: 11–15.

    CAS  Google Scholar 

  15. Yamamoto S, Morita K, Kitano S, Watanabe K, Koizumi I. Maekawa K, Takamura K, Phylogeography of white-spotted charr (Salvelinus leucomaenis) inferred from mitochondrial DNA sequences. Zool. Sci. 2004; 21: 229–240.

    Article  PubMed  CAS  Google Scholar 

  16. Williams RN, Shiozawa DK, Carter JE, Leary RF. Genetic detection of putative hybridization between native and introduced rainbow trout populations of the upper-Snake River. Trans. Am. Fish. Soc. 1996; 125: 387–401.

    Article  CAS  Google Scholar 

  17. McCracken GF, Parker CR, Guffey SZ. Genetic differentiation and hybridization between stocked hatchery and native brook trout in Great Smoky Mountains National Park. Trans. Am. Fish. Soc. 1993; 122: 533–542.

    Article  Google Scholar 

  18. Araguas RM, Sanz N, Pla C, Garcia-Marin JL. Breakdown of the brown trout evolutionary history due to hybridization between native and cultivated fish. J. Fish Biol. 2004; 65 (Suppl. A): 28–37.

    Article  Google Scholar 

  19. Piller KR, Wilson CC, Lee CE, Lyons J. Conservation genetics of inland lake trout in the upper Mississippi River basin: stocked or native ancestry? Trans. Am. Fish. Soc. 2005; 134: 789–802.

    Article  Google Scholar 

  20. Inoue JG, Miya M, Tsukamoto K, Nishida M. Complete mitochondrial DNA sequence of the Japanese sardine Sardinops melanostictus. Fish. Sci. 2000; 66: 924–932.

    Article  CAS  Google Scholar 

  21. Aoyama J, Watanabe S, Ishikawa S, Nishida M, Tsukamoto K. Are morphological characters distinctive enough to discriminate between two species of freshwater eels, Anguilla celebesensis and A. Interior. Ichthyol. Res. 2000; 47; 157–161.

    Article  Google Scholar 

  22. Angers B, Bernatchez L, Angers A, Desgroseillers L. Specific microsatellite loci for brook charr reveal strong population subdivision on a microgeographic scale. J. Fish Biol. 1995; 47 (Suppl. A): 177–185.

    Article  CAS  Google Scholar 

  23. Sakamoto T, Okamoto N, Ikeda Y. Dinucleotide repeat polymorphism of rainbow trout, FGT3. J. Anim. Sci. 1994; 72: 2766–2767.

    PubMed  CAS  Google Scholar 

  24. Small MP, Beacham TD, Withler RE, Nelson RJ. Discriminating coho salmon (Oncorhynchus kisutch) populations within the Fraser River, British Columbia, using microsatellite DNA markers. Mol. Ecol. 1998; 7: 141–155.

    Article  CAS  Google Scholar 

  25. O’Reilly PT, Hamilton LC, McConnell SK, Wright JM. Rapid analysis of genetic variation in Atlantic salmon (Salmo salar) by PCR multiplexing of dinucleotide and tetranucleotide microsatellites. Can. J. Fish. Aquat. Sci. 1996; 53: 2292–2298.

    Article  Google Scholar 

  26. Estoup A, Rousset F, Michalakis Y, Cornuet JM, Adriamanga M, Guyomard R. Comparative analysis of microsatellite and allozyme markers: a case study investigating microgeographic differentiation in brown trout (Salmo trutta). Mol. Ecol. 1998; 7: 339–353.

    Article  PubMed  CAS  Google Scholar 

  27. Schneider S, Roessili D, Excoffier L. ARLEQUIN: A Software for Population Genetics Data Analysis, Ver 2.001. Genetics and Biometry Laboratory, Department of Anthropology, University of Geneva. Geneva. 2001. Available from URL: http://lgb.unige. ch/arlequin/

    Google Scholar 

  28. Raymond M, Rousset F. GENEPOP ver. 3.4: population genetics software for exact tests and ecumenicism. J. Hered. 1995; 86: 248–249.

    Google Scholar 

  29. Rice WR. Analyzing tables of statistical tests. Evolution 1989; 43: 223–225.

    Article  Google Scholar 

  30. Gouded J. PCA-GEN Ver. 1. 2. Population Genetics Laboratory. University of Lausanne. Lausanne. 1999. Available from URL: http://www.unil.ch/izea/softwares/peagen. html.

    Google Scholar 

  31. Queller DC, Goodnight KF. Estimating relatedness using genetic markers. Evolution 1989; 43: 258–275.

    Article  Google Scholar 

  32. Cavalli-Sforza LL, Edwards AWF. Phylogenetic analysis: models and estimation procedures. Am. J. Human Genet 1967; 19: 233–257.

    CAS  Google Scholar 

  33. Minch E, Ruiz-Linares A, Goldstein D, Feldman M, Cavalli-Sforza LL. Microsat (Ver. 1.5): A Computer Program for Calculating Various Statistics on Microsatellite Allele Data. Stanford University Medical Center, Stanford, CA 1996. Available from URL: http://hpgl.staford.edu/projects/microsat/microsat.html

    Google Scholar 

  34. Felsenstein J. PHYLIP (Phylogeny Inference Package) Ver. 3.6b. Department of Genome Science, University of Washington, Seattle, WA. 2004. Available from URL: http://evolution.gs.washington.edu/phylip.html.

    Google Scholar 

  35. Tessier N, Bernatchez L, Wright M. Population structure and impact of supportive breeding inferred from mitochondrial and microsatellite DNA analysis in land-locked Atlantic salmon Salmo salar L. Mol. Ecol. 1997; 6: 735–750.

    Article  Google Scholar 

  36. Brunner PC, Douglas MR, Bernatchez L. Microsatellite and mitochondrial DNA assessment of population structure and stocking effects in Arctic charr Salvelinus alpinus (Teleostei: Salmonidae) from central Alpine lakes. Mol. Ecol. 1998; 7: 209–223.

    Article  CAS  Google Scholar 

  37. Kanda N, Allendorf FW. Genetic population structure of bull trout from the Flathead River basin as shown by microsatellite and mitochondrial DNA markers. Trans. Am. Fish. Soc. 2001; 130: 92–106.

    Article  Google Scholar 

  38. Spruell P, Hemmingsen AR, Howell PJ, Kanda N, Allendorf FW. Conservation genetics of bull trout: geographic distribution of variation at microsatellite loci. Conserv. Genet 2003; 4: 17–29.

    Article  CAS  Google Scholar 

  39. Matsuura S. Development of the National Land and Rivers in Japan. Kashima-Shuppankai, Tokyo. 1989 (in Japanese).

    Google Scholar 

  40. Birky CW, Maruyama T, Fuerst P. An approach to population and evolutionary genetic theory for genes in mitochondria and chloroplasts, and some results. Genetics 1983; 103: 513–527.

    PubMed  Google Scholar 

  41. Nei M. Molecular Evolutionary Genetics. Columbia University Press. NY. 1987.

    Google Scholar 

  42. Yamamoto S, Morita K, Koizumi I, Maekawa K. Genetic differentiation of white-spotted charr (Salvelinus leucomaenis) populations after habitat fragmentation: spatialtemporal changes in gene frequencies. Conserv. Genet. 2004; 5: 529–538.

    Article  CAS  Google Scholar 

  43. Marzano FN, Corradi N, Papa R, Tagliavini J, Gandolfi G. Molecular evidence for introgression and loss of genetic variability in Salmo (trutta) macrostigma as a result of massive restocking of Apennine populations (Northern and Central Italy). Environ. Biol. Fish. 2003; 68: 349–356.

    Article  Google Scholar 

  44. Kanda N, Leary RF, Allendorf FW. Population genetic structure of bull trout in the upper Flathead River drainage. In: Mackay WC, Brewin MK, Monita M (eds). Friends of the Bull Trout Conference Proceedings. Bull Trout Task Force (Alberta), Trout Unlimited Canada, Calgary, AB. 1997; 299–308.

    Google Scholar 

  45. Costello AB, Down TE, Pollard SM, Pacas CJ, Taylor FB. The influence of history and contemporary stream hydrology on the evolution of genetic diversity within species: an examination of microsatellite DNA variation in bull trout, Salvelinus confluentus (Pisces: Salmondae). Evolution 2003; 57: 328–344.

    PubMed  CAS  Google Scholar 

  46. Van Houdt JKJ Pinceel J, Flamand M-C, Briquet M, Dupont E, Volckaert FAM, Baret PV. Migration barriers protect indigenous brown trout (Salmo trutta) populations from introgression with stocked hatchery fish. Conserv. Genet. 2005; 6: 175–191.

    Article  Google Scholar 

  47. Sekino M, Sugaya T, Hara M, Taniguchi N. Relatedness inferred from microsatellite genotypes as a tool for broodstock management of Japanese flounder Paralichthys olivaceus. Aquaculture 2004; 233 163–172.

    Article  Google Scholar 

  48. Ditlecadet D, Dufresne F, Le François NR, Blier PU. Applying microsatellites in two commercial strains of Arctic charr (Salvelinus alpinus): potential for a selective breeding program. Aquaculture 2006; 257: 37–43.

    Article  CAS  Google Scholar 

  49. Allendorf FW, Phelps SR. Loss of genetic variation in a hatchery stock of cutthroat trout. Trans. Am. Fish. Soc. 1980; 109: 537–543.

    Article  Google Scholar 

  50. Allendorf FW, Ryman N. Genetic management of hatchery stocks. In: Ryman N, Utter FW (eds). Population Genetics and Fishery Management. Washington sea grant program. University of Washington Press. Seattle, WA. 1987; 141–159.

    Google Scholar 

  51. Ståhl G. Differences in the amount and distribution of genetic variation between natural populations and hatchery stocks of Atlantic salmon. Aquaculture 1983; 33: 23–32.

    Article  Google Scholar 

  52. Maekawa K, Koseki Y, Iguchi K, Kitano S. Skewed reproductive success among male white-spotted charr land-locked by an erosion control dam: implications for effective population size. Ecol. Res. 2001; 16: 727–735.

    Google Scholar 

  53. Harig AL, Fausch KD, Young MK. Factors influencing success of greenback cutthroat trout translocations. N. Am. J. Fish. Manage. 2000; 20: 994–1004.

    Article  Google Scholar 

  54. Hilderbrand RH, Kershner JL. Conserving inland cutthroat trout in small streams: how much stream is enough? N Am. J. Fish. Manage. 2000; 20: 513–520.

    Article  Google Scholar 

  55. Novinger DC, Rahel FJ. Isolation management with artificial barriers as a conservation strategy for cutthroat trout in headwater streams. Conserv. Biol. 2003; 17: 772–781.

    Article  Google Scholar 

  56. Morita K, Yamamoto S. Effects of habitat fragmentation by damming on the persistence of stream-dwelling charr populations. Conserv. Biol. 2002; 16: 1318–1323.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Kubota.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubota, H., Doi, T., Yamamoto, S. et al. Genetic identification of native populations of fluvial white-spotted charr Salvelinus leucomaenis in the upper Tone River drainage. Fish Sci 73, 270–284 (2007). https://doi.org/10.1111/j.1444-2906.2007.01333.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1444-2906.2007.01333.x

Key words

Navigation