Skip to main content
Log in

Reproductive cycle, age, and body size at maturity and fecundity of female willowy flounder Tanakius kitaharai

  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

Annual reproductive cycle, age and body size at maturity, and potential and relative fecundity were examined in female willowy flounder in the North Pacific off Japan. Vitellogenesis became active from September, followed by the beginning of spawning in December. The spawning season continued until May with its peak in January. Estimated maturation rate was 50% at a standard length of 16 cm, 30% in 2-year-olds, and almost 100% in ≥3-year-old fish. Potential fecundity increased with age, while relative fecundity decreased in older fish. The results clarify some aspects of the detailed reproductive biology of female willowy flounder and emphasize the importance of age-composition data in estimating reproductive potential within a population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sakamoto K. Tanakius kitaharai (Jordan et Starks). In: Masuda H, Amaoka K, Araga C, Uyeno T, Yoshino T (eds). The Fishes of the Japanese Archipelago. Tokai University Press. Tokyo, 1984; 339.

    Google Scholar 

  2. Narimatsu Y, Ito M, Hattori T, Fujiwara K. Stock assessment of willowy flounder in the North Pacific Ocean off Japan in 2005. In: Stock Assessment of Fisheries Resources Around Japan. Fisheries Agency of Japan. 2006; 1292–1302 (in Japanese).

  3. Fujita S. Early development and rearing of two common flatfishes, Eopsetta grigorjewi (Herzenstein) and Tanakius kitaharai (Jordan et Starks). Nippon Suisan Gakkaishi 1965; 31: 258–262.

    Google Scholar 

  4. Minami T. The early life history of a flounder Tanakius kitaharai. Nippon Suisan Gakkaishi 1983; 49: 527–532.

    Google Scholar 

  5. Hashimoto R. Studies on the age of Tanakius kitaharae (Jordan & Starks). Bull. Tohoku Reg. Fish. Res. Lab. 1955; 4: 156–164.

    Google Scholar 

  6. Yabuki K. Age determination of yanagimushigarei Tanakius kitaharai (Pleuronectidae) from otoliths in the Sea of Japan off Kyoto Prefecture. Nippon Suisan Gakkaishi 1989; 55: 1331–1338.

    Google Scholar 

  7. Shimamura S, Igarashi S. Flatfish, Tanakius kitaharai (Jordan et Starks) caught in the coast of Fukushima region. Bull. Fukushima Pref. Fish. Exp. Stat. 2000; 9: 29–52.

    Google Scholar 

  8. Yagishita N, Ohki S, Yamazaki A. Age, growth and age composition of Tanakius kitaharat in western Wakasa Bay, Japan, Nippon Suisan Gakkaishi 2005; 71: 138–145.

    Article  Google Scholar 

  9. Ouchi A, Ogata T. Studies on the animal distribution in the abstained areas for trawl-fishery of the northern Japan Sea I. Young bottom fishes. Ann. Rep. Jpn. Sea. Reg. Fish. Res. Lab. 1960; 6: 157–171.

    Google Scholar 

  10. Hunter JR, Macewicz BJ. Measurement of spawning frequency in multiple spawning fishes. NOAA Techn Rep. NMFS. 1985; 36: 79–94.

    Google Scholar 

  11. Yamamoto K. Studies on the formation of fish eggs I. Annual cycle in the development of ovarian eggs in the flounder, Liopsetta obscura. J. Fac. Fish. Hokkaido Univ. 1956; 12: 362–373.

    Google Scholar 

  12. Wallace RA, Selman K. Cellular and dynamic aspects of oocyte growth in teleosts. Am. Zool., 1981; 21: 325–343.

    Google Scholar 

  13. Takano K. Ovarian structure and gametogenesis. In: Takashima F, Hanyu I (eds), Reproductive Biology of Fish and Shellfish. Midori-Shobo, Tokyo. 1989; 3–34 (in Japanese).

    Google Scholar 

  14. Kurita Y. Procedures to estimate reproductive traits of fish by combining field surveys and experiments. Bull. Fish. Res. Agen. Suppl. 2006; 4: 87–99.

    Google Scholar 

  15. De Vlaming VL. Oocyte development patterns and hormonal involvements among teleosts. In: Rankin JC (ed.), Control. Processes in Fish Physiology. Chapman & Hall, London, 1983; 176–199.

    Google Scholar 

  16. Harmin SA, Crim LW, Wiegand MD. Plasma sexsteroid profiles and the seasonal reproductive cycle in male and female winter flounder, Pleuronectes americanus. Mar. Biol. 1995; 121: 601–610.

    Article  CAS  Google Scholar 

  17. Janssen PAH, Lambert JGD, Goos HJTh. The annual ovarian cycle and the influence of pollution on vitellogenesis in the flounder, Pleuronectes flesus. J. Fish. Biol. 1995; 47: 509–523.

    Article  Google Scholar 

  18. Maddock DM, Burton MPM. Gross and histological observations of ovarian development and related condition changes in American plaice. J. Fish. Biol. 1999; 53: 928–944.

    Article  Google Scholar 

  19. Narimatsu Y, Kitagawa D, Hattori T, Onodera H. Reproductive biology of female Rikuzen sole (Dexistes rikuzenius). Fish. Bull. 2005; 103: 635–647.

    Google Scholar 

  20. De Vlaming VL. The effects of temperature and photoperiod on reproductive cycling in the estuarine gobiid fish. Gillichthys mirabilis. Fish. Bull. 1972; 70: 1137–1152.

    Google Scholar 

  21. Hanyu I. Reproductive cycle. In: Itazawa H, Hanyu I (eds). Fish Physiology, Koseisha-Koseikaku, Tokyo. 1991; 287–325 (in Japanese).

    Google Scholar 

  22. Hirakawa H, Tominaga A. Annual changes of recruitment in flatfishes in Joban and Kashimanada waters. Bull. Jpn. Soc. Fish. Oceanogr. 1998; 62: 24–25.

    Google Scholar 

  23. Nihira A. The responses of demersal fish populations to climatic regime shifts. Kaiyo Monthly. 2006; 38: 192–199.

    Google Scholar 

  24. Schultz ET, Cliftonet LG, Warner RR. Energetic constraints and size-based tactics: the adaptive significance of breeding schedule variation in a marine fish (Embiotocidae: Micrometrus minimus). Am. Nat. 1991; 138: 1408–1430.

    Article  Google Scholar 

  25. Baylis JR, Wiegmann DD, Hoff MH. Alternating life histories of smallmouth bass. Trans. Am. Fish. Soc. 1993; 122: 500–510.

    Article  Google Scholar 

  26. Schultz ET. The effects of birth date on fitness of female dwarf perch, Micrometrus minimus (Perciformes: Embiotocidae). Evolution 1993; 47: 520–539.

    Article  Google Scholar 

  27. Trippel EA, Kjesbu OS, Solemdal P. Effects of adult age and size structure on reproductive output in marine fishes. In: Chambers C, Trippel EA (eds), Early Life History and Recruitment in Fish Populations. Chapman & Hall, London. 1997; 31–62.

    Google Scholar 

  28. Nakahara T. Fishery and biological characteristics of commercially important demersal fishes inhabited on the continental shelf off Yamaguchi Prefecture. Bull. Yamaguchi Pref. Open-Sea Fish. Exp. Stn. 1969; 11: 1–70.

    Google Scholar 

  29. Igarashi S, Shimamura S. Feeding habits of flatfish, Tanakius kitaharai (Jordan et Starks), in Fukushima. Bull. Fukushima Pref. Fish. Exp. Stat. 2000; 9: 53–58.

    Google Scholar 

  30. Beacham TD. Variability in median size and age at sexual maturity of Atlantic cod (Gadus morhua) on the Scotian Shelf in the Northwest Atlantic Ocean. Fish. Bull. 1983; 81: 303–321.

    Google Scholar 

  31. Jørgensen T. Long-term changes in age at sexual maturity of Northeast Arctic cod (Gadus morhua L.). J. Conserv. Int. Explor. Mer. 1990; 46: 235–248.

    Google Scholar 

  32. Bowering WR, Brodie WB. Distribution of commercial flatfishes in the Newfoundland-Labrador region of the Canadian Northwest Atlantic and changes in certain biological parameters since exploitation. Neth. J. Sea Res. 1991; 27: 407–422.

    Article  Google Scholar 

  33. Trippel EA. Age at maturity as a stress indicator in fisheries. Bioscience 1995; 45: 759–771.

    Article  Google Scholar 

  34. Armstrong MJ, Gerritsen HD, Allen M, McCurdy WJ, Peel JAD. Variability in maturity and growth in a heavily exploited stock: cod (Gadus morhua L.) in the Irish Sea. ICES J. Mar. Sci. 2004; 64: 98–112.

    Article  Google Scholar 

  35. Engelhard GH, Heino M. Maturity changes in Norwegian spring-spawning herring Clupea harengus: compensatory or evolutionary responses? Mar. Ecol. Prog. Ser. 2004; 272: 245–256.

    Article  Google Scholar 

  36. Narimatsu Y. Reproductive biology of Pacific cod, a review especially referring to interannual variations of biomass, age and size at maturity and fecundity. Bull. Fish. Res. Agen. Suppl. 2006; 4: 137–146.

    Google Scholar 

  37. Horwood JW, Bannister RCA, Howlett GJ, Comparative fecundity of North Sea plaice. Proc. R. Soc. Lond. B. 1986; 228: 401–431.

    Article  Google Scholar 

  38. Koslow JA, Bell J, Virtue P, Smith DC. Fecundity and its variability in orange roughy: effects of population density, condition, egg size, and senescence. J. Fish. Biol. 1995; 47: 1063–1080.

    Article  Google Scholar 

  39. Beverton RJH, Holt SJ. On the dynamics of exploited fish populations. Fish. Invest. Ser. II. 1957; 29: 1–553.

    Google Scholar 

  40. Beverton RJH, Hylen A, Østedt OJ. Growth, maturation, and longevity of maturation cohorts of Northeast Arctic cod. ICES Mar. Sci. Symposia. 1994; 198: 482–501.

    Google Scholar 

  41. Murawski SA, Rago RJ, Trippel EA. Impacts of demographic variation in spawning characteristics on reference points for fishery management. ICES J. Mar. Sci. 2001; 58: 1002–1014.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoji Narimatsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narimatsu, Y., Yamanobe, A. & Takahashi, M. Reproductive cycle, age, and body size at maturity and fecundity of female willowy flounder Tanakius kitaharai . Fish Sci 73, 55–62 (2007). https://doi.org/10.1111/j.1444-2906.2007.01301.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1444-2906.2007.01301.x

Key words

Navigation