Fisheries Science

, Volume 72, Issue 4, pp 811–820 | Cite as

Bacterial degradation of antibiotic residues in marine fish farm sediments of Uranouchi Bay and phylogenetic analysis of antibiotic-degrading bacteria using 16S rDNA sequences

  • Teruya Maki
  • Hiroshi Hasegawa
  • Hiroyuki Kitami
  • Kyoko Fumoto
  • Yukihiro Munekage
  • Kazumasa Ueda


Antibiotic residues in marine sediments of fish farms negatively influence microbial ecologic systems. The microbial degradation of antibiotic residues was experimentally examined in the marine sediments of Uranouchi Bay, to which one of five antibiotics was added. After incubation reducing physical factors, ampicillin, doxycycline, oxytetracycline, and thiamphenicol were significantly degraded, while josamycin maintained most of the initial amounts. The isolates resistant to ampicillin, josamycin, oxytetracycline, or thiamphenicol degraded each antibiotic in wide ranges of degrees, whereas the isolates degrading doxycycline were not obtained. Microbial degradation may contribute to the disappearance of ampicillin, doxycycline, oxytetracycline, and thiamphenicol in the fish farm. In contrast, the disappearance of josamycin would depend on physical factors, but the bacteria degrading josamycin at least exist in the marine sediments. Phylogenetic analysis using 16S rDNA sequences demonstrated that the antibiotic-resistant isolates formed several clusters in the Gram-positive bacterial group, the Flavobacterium-Cytophaga-Bacteroides group, and the proteobacteria subdivisions. The antibiotic-resistant bacterial population would be composed of various species including ubiquitous coastal bacterial groups. Several species of antibiotic resistant bacteria show antibiotic degradation activities, and appear to contribute to the disappearance of antibiotics in Uranouchi Bay.

Key words

antibiotic residue antibiotic-degrading bacteria fish farm microflora 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alderman D, Michel C. Chemotherapy in aquaculture today. In: Michel C, Alderman DJ (eds). Chemotherapy in Aquaculture. From Theory to Reality. Office International des Epizootics, Paris. 1992; 3–24.Google Scholar
  2. 2.
    Jacobsen P, Berglind L. Persistence of oxytetracycline in sediments from fish farms. Aquaculture 1988; 70: 365–370.CrossRefGoogle Scholar
  3. 3.
    Samuelsen OB. Degradation of oxytetracycline in seawater at two different temperatures and light intensities, and the persistence of oxytetracycline in the sediments from a fish farm. Aquaculture 1989; 83: 7–16.CrossRefGoogle Scholar
  4. 4.
    Björklund H, Bondesteam J, Bylund G. Residues of oxytetracycline in wild fish and sediments from fish farm. Aquaculture 1990; 86: 359–367.CrossRefGoogle Scholar
  5. 5.
    Samuelsen OB, Lunestad BT, Ervik A, Fjelde S. Stability of antibacterial agents in an artificial marine aquaculture sediment studied under laboratory conditions. Aquaculture 1994; 126: 283–290.CrossRefGoogle Scholar
  6. 6.
    Rogstad B, Hormazabal V, Ellingsen OF, Rasmussen KE. Pharmacokinetic study of oxytetracycline in fish. I. Absorption. distribution and accumulation in rainbow trout in freshwater. Aquaculture 1991; 96: 219–226.CrossRefGoogle Scholar
  7. 7.
    Lalumera GM, Calamari D, Galli P, Castiglioni S, Crosa G, Fanelli R. Preliminary investigation on the environmental occurrence and effects of antibiotics used in aquaculture in Italy. Chemosphere 2004; 54: 661–668.PubMedCrossRefGoogle Scholar
  8. 8.
    Brown JH, Higuera-Ciapara I. Antibiotic residues in farmed shrimp-a developing problem? In: Michel C, Alderman DJ (eds). Chemotherapy in Aquaculture. From Theory to Reality. Office International des Epizootics, Paris, 1992; 394–403.Google Scholar
  9. 9.
    Aoki T. Present and future problems concerning the development of resistance in aquaculture. In: Michel C, Alderman DJ (eds). Chemotherapy in Aquaculture. From Theory to Reality. Office International des Epizootics. Paris. 1992; 254–262.Google Scholar
  10. 10.
    Schmidt AS, Bruun MS, Dalsgaard I, Pedersen K, Larsen JL. Occurrence of antimicrobial resistance in fish-pathogenic and environmental bacteria associated with four Danish rainbow trout farms. Appl. Environ. Microbiol. 2000; 66: 4908–4915.PubMedCrossRefGoogle Scholar
  11. 11.
    Arvanitidou M, Katsouyannopoulos V, Tsakris A. Antibiotic resistance patterns of enterococci isolated from coastal bathing waters. J. Med. Microbiol. 2001; 50: 1001–1005.PubMedGoogle Scholar
  12. 12.
    Tendencia EA, de la Pena LD. Antibiotic resistance of bacteria from shrimp ponds. Aquaculture 2001; 195: 193–204.CrossRefGoogle Scholar
  13. 13.
    Miranda CD, Zemelman R. Antimicrobial multiresistance, in bacteria isolated from freshwater Chilean salmon farms. Sci. Total Environ. 2002; 293: 207–218.CrossRefGoogle Scholar
  14. 14.
    Miranda CD, Zemelman R. Bacterial resistance to oxytetracycline in Chilean salmon farming. Aquaculture 2002; 212: 31–47.CrossRefGoogle Scholar
  15. 15.
    Chelossi E, Vezzulli L, Milano A, Branzoni M, Fabiano M, Riccardi G, Banat IM. Antibiotic resistance of benthic bacteria in fish-farm and control sediments of the Western Mediterranean. Aquaculture 2003; 219: 83–97.CrossRefGoogle Scholar
  16. 16.
    Rhodes G, Huys G, Swings J, Mcgann P, Hiney M, Smith P, Pickup RW. Distribution of oxytetracycline resistance plasmids between aeromonads in hospital and aquaculture environments: implication of Tn1721 in dissemination of the tetracycline resistance determinant tet A. Appl. Environ. Microbiol. 2000; 66: 3883–3890.PubMedCrossRefGoogle Scholar
  17. 17.
    Schmidt AS, Bruun MS, Dalsgaard I, Larsen JL. Incidence, distribution, and spread of tetracycline resistance determinants and integron-associated antibiotic resistance genes among motile aeromonads from a fish farming environment. Appl. Environ. Microbiol. 2001; 67: 5675–5682.PubMedCrossRefGoogle Scholar
  18. 18.
    Martinez JL, Baquero F. Interactions among strategies associated with bacterial infection: pathogenicity, epidemicity, and antibiotic resistance. Clin. Microbiol. Rev. 2002; 15: 647–679.PubMedCrossRefGoogle Scholar
  19. 19.
    Sørum H, L’Abee-Lund TM, Solberg A, Wold A. Integron-containing IncU R plasmids pRASI and pAr-32 from the fish pathogen Aeromonas salmonicida. Antimicrob. Agents Chemother. 2003; 47: 1285–1290.PubMedCrossRefGoogle Scholar
  20. 20.
    Lunestad BT. Fate and effects of antibacterial agents in aquatic environments. In: Michel C, Alderman DJ (eds). Chemotherapy in Aquaculture. From Theory to Reality. Office International des Epizootics, Paris. 1992; 152–161.Google Scholar
  21. 21.
    Stock I, Heisig P, Wiedemann B. Expression of betalactamases in Yersinia enterocolitica strains of biovars 2, 4 and 5. J. Med. Microbiol. 1999; 48: 1023–1027.PubMedGoogle Scholar
  22. 22.
    Tzelepi E, Arvanitidou M, Mavroidi A, Tsakris A. Antibiotic susceptibilities of Yersinia enterocolitica and Y. intermedia isolates from aquatic environments. J. Med. Microbiol. 1999; 48: 157–160.PubMedCrossRefGoogle Scholar
  23. 23.
    Nitzan Y, Deutsch EB, Pechatnikov I. Diffusion of betalactam antibiotics through oligomeric or monomeric porin channels of some gram-negative bacteria. Curr. Microbiol. 2002; 45: 446–455.PubMedCrossRefGoogle Scholar
  24. 24.
    Petersen A, Dalsgaard A. Antimicrobial resistance of intestinal Aeromonas spp. and Enterococcus spp. in fish cultured in integrated broiler-fish farms in Thailand. Aquaculture 2003; 219: 71–82.CrossRefGoogle Scholar
  25. 25.
    Munekage Y, Naing KM. Uranouchiwan ni okeru suisannyou kouseibussitsu no bunnpu to zannryuusei ni kannsuru kennkyuu. Kaigan Gakkai Ronnbunn 2005; 52: 926–930 (in Japanese).Google Scholar
  26. 26.
    Knox JH, Jurand J. Mechanism of reversed-phase separation of tetracyclines by high-performance liquid chromatography. J. Chromatogr. 1979; 186: 776–782.CrossRefGoogle Scholar
  27. 27.
    Oka H, Matsumoto K, Harada K, Kadowaki S, Suzuki M. Improvement of chemical analysis of antibiotics, VIII. Application of prepacked C18 cartridge for the analysis of tetracycline residues in animal liver. Chromatography 1985; 325: 265–274.CrossRefGoogle Scholar
  28. 28.
    Alderman DJ, Smith P. Development of draft protocols of standard reference methods for antimicrobial agent susceptibility testing of bacteria associated with fish diseases. Aquaculture 2001; 196: 211–243.CrossRefGoogle Scholar
  29. 29.
    Russell WC, Newman C, Williamson DH. A simple cytochemical technique for demonstration of DNA in cells infected with mycoplasms and viruses. Nature 1974; 253: 461–462.CrossRefGoogle Scholar
  30. 30.
    Porter KG, Feig YS. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 1980; 25: 943–948.Google Scholar
  31. 31.
    Maidak BL, Olsen GJ, Larsen N, Overbeek R, Mccaughey MJ, Woese C. The RDP (Ribosomal Database Project). Nucleic Acids Res. 1997; 25: 109–111.PubMedCrossRefGoogle Scholar
  32. 32.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J. Mol. Biol. 1990; 215: 403–410.PubMedGoogle Scholar
  33. 33.
    Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987; 4: 406–425.PubMedGoogle Scholar
  34. 34.
    Thompson JD, Higgins DG, Gibson TJ. CLUSTALW: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994; 22: 4673–4680.PubMedCrossRefGoogle Scholar
  35. 35.
    Samuelsen OB, Solheim E, Lunestad BT. Fate and microbiological effects of furazolidone in a marine aquaculture sediment. Sci. Total Environ. 1991; 108: 275–283.PubMedCrossRefGoogle Scholar
  36. 36.
    Björklund H, Rabergh CMI, Bylund G. Residues of oxolinic acid and oxytetracycline in fish and sediments from fish farms. Aquaculture 1991; 97: 85–96.CrossRefGoogle Scholar
  37. 37.
    Hancock RE. The bacterial outer membrane as a drug barrier. Trends Microbiol. 1997; 5: 37–42.PubMedCrossRefGoogle Scholar
  38. 38.
    Hawkey PM. The origins and molecular basis of antibiotic resistance. Br. Med. J. 1998; 317: 657–660.Google Scholar
  39. 39.
    Alonso A, Sanchez P, Martinez JL. Environment selection of antibiotic resistance genes. Environ. Microbiol 2001; 3: 1–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Chandrasekaran K. Industrial enzymes from marine microorganisms: the Indian scenario. J. Mar. Biotechnol. 1997; 5: 86–89.Google Scholar
  41. 41.
    Cheung TK, Ho PL, Woo PC, Yuen KY, Chau PY. Cloning and expression of class A beta-lactamase gene blaA (BPS) in Burkholderia pseudomallei. Antimicrob. Agents Chemother. 2002; 46: 1132–1135.PubMedCrossRefGoogle Scholar
  42. 42.
    Fang H, Edlund C, Hedberg M, Nord CE. New findings in beta-lactam and metronidazole resistant Bacteroides fragilis group. Int. J. Antimicrob. Agents 2002; 19: 361–370.PubMedCrossRefGoogle Scholar
  43. 43.
    Egidius E, Wiik K, Andersen K, Hoff KA, Hjeltnes B. Vibrio salmonicida spp. nov., a new fish pathogen. Int. J. Syst. Bacteriol. 1986; 36: 518–520.CrossRefGoogle Scholar
  44. 44.
    Depaola A, Ulaszek J, Kaysner CA, Tenge BJ, Nordstrom JL, Wells J, Puhr N, Gendel SM. Molecular, serological and virulence characteristics of Vibrio parahaemolyticus isolated from environmental, food, and clinical sources in North America and asia. Appl. Environ. Microbiol. 2003; 69: 3999–4005.PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society of Fisheries Science 2006

Authors and Affiliations

  • Teruya Maki
    • 1
  • Hiroshi Hasegawa
    • 1
  • Hiroyuki Kitami
    • 1
  • Kyoko Fumoto
    • 1
  • Yukihiro Munekage
    • 2
  • Kazumasa Ueda
    • 1
  1. 1.Graduate School of Natural Science and TechnologyKanazawa UniversityKakuma, KanazawaJapan
  2. 2.Department of Environmental TechnologyKochi UniversityNankoku, KochiJapan

Personalised recommendations