Skip to main content
Log in

Die Muskulatur der oberen Atemwege: Strukturelle und pathophysiologische Aspekte beim obstruktiven Schlafapnoe-Syndrom

The upper airway muscles: Structural and pathophysiological aspects in the obstructive sleep apnoea syndrome

  • Originalarbeiten
  • Published:
Somnologie - Schlafforschung und Schlafmedizin Aims and scope Submit manuscript

Zusammenfassung

Der Querschnitt der oberen Atemwege und damit die Pathophysiologie des obstruktiven Schlafapnoe-Syndroms (OSAS) werden wesentlich von der Funktion der dilatatorischen Muskeln bestimmt. Besondere Wichtigkeit kommt dabei dem M. genioglossus zu. Die Muskeln unterliegen einer tonischen Grundaktivität, die kontinuierlich mit der Schlaftiefe abnimmt, und teilweise aber auch einer phasischen, inspirationsgetriggerten Aktivität. Aber auch lokale Reflexmechanismen, z.B. auf mechanische Reize, bestimmen die Muskelspannung. Zur Stabilisierung der oberen Atemwege ist es notwendig, dass die pharyngealen Muskeln zeitlich vor dem Zwerchfell erregt werden. Anatomische Veränderungen der oberen Atemwege prädisponieren zum einen durch eine Verkleinerung des Querschnitts, zum anderen durch eine ungünstigere Positionierung der Muskeln zum OSAS. Zwar werden im Wachzustand Aktivitätssteigerungen der Muskulatur nachgewiesen, diese Kompensations-mechanismen scheinen jedoch im Schlaf zu versagen. Die Dauerbelastung der Muskulatur führt jedoch auch zu einer Veränderung der Verteilung der Muskelfasertypen. Der Anteil der Typ-IIa-Fasern, die als dauerbelastungsresistent gelten, nimmt zu. Es findet sich jedoch auch ein neurogenes Schädigungsbild mit einem Nebeneinander von atrophischen und homogen hypertrophierten Fasern. Es wird vermutet, dass dieses Muster aus dem langfristigen Vibrationstrauma durch das Schnarchen resultiert. Die periphere Nervenläsion macht sich auch mit sensorischen Störungen und damit einer Beeinträchtigung der Reflexmechanismen bemekbar. Beim OSAS kommt somit dem peripheren Nerven und der Schädigung der Muskeln der oberen Atemwege größte Bedeutung zu.

Summary

The width of the upper airways and the pathophysiology of the obstructive sleep apnoea syndrome (OSAS) essentially depend on the function of the dilating muscles. Especially the genioglossus muscle is of crucial importance. The tonic activity of the muscles continuously decreases during sleep. Moreover, several muscles show phasic activity, which is triggered during inspiration. Local reflex mechanisms, e.g. due to mechanical irritations, additionally influence the muscle tone. It is of central importance that the pharyngeal muscles are activated earlier than the diaphragm to stabilise the upper airways. Morphological abnomalities predispose to obstructions due a diminution in the width of the upper airways and due to disadvantageous positioning of the muscles. Although muscle activity is increased in sleep apnoea patients during wakefulness, this compensatory mechanism seems to fail in sleep. The continuous mechanical load of the muscles leads to morphological changes such as a modified distribution of the fibre types. The proportion of the fatigue-resistant type IIa fibres increases. Moreover, the muscles show the typical pattern of a neurogenic lesion with atrophic areas side by side with regions of hypertrophy of a single fibre type. The sensory characteristics of the peripheral nerves are affected, too, which impair the upper airway reflexes. These lesions seem to result from long-term snoring, which induces a vibration trauma. Therefore, lesions of the peripheral nerves and the subsequent impairment of the upper airway muscles are essential in the pathophysiology of OSAS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Edstrom L, Larsson H, Larsson L: Neurogenic effects on the palatopharyngcal muscle in patients with obstructive sleep apnoea: a muscle biopsy study. J Neurol Neurosurg Psychiatry 55(10):916–920, 1992.

    Article  PubMed  CAS  Google Scholar 

  2. Fogel RB, Malhotra A, Shea SA, Edwards JK, White DP: Reduced genioglossal activity with upper airway anesthesia in awake patients with OSA. J Appl Physiol 88(4): 1346–1354, 2000.

    PubMed  CAS  Google Scholar 

  3. Fogel RB, Trinder J, Malhotra A, Stanchina M, Edwards JK, Schory KE et al.: Within-breath control of genioglossal muscle activation in humans: effect of sleep-wake state. J Physiol 550 (3):899–910, 2003.

    Article  PubMed  CAS  Google Scholar 

  4. Fogel RB, Malhotra A, White DP: Sleep 2: pathophysiology of obstructive sleep apnoea/hypopnoca syndrome. Thorax 59(2):159–163, 2004.

    Article  PubMed  CAS  Google Scholar 

  5. Friberg D, Ansved T, Borg K, Carlsson-Nordlander B, Larsson H, Svanborg E: Histological indications of a progressive snorers disease in an upper airway muscle. Am J Respir Crit Care Med 157: 586–593, 1998.

    PubMed  CAS  Google Scholar 

  6. Hudgel DW, Harasick T: Huctuation in timing of upper airway and chest wall inspiratory muscle activity in obstructive sleep apnea. J Appl Physiol 69(2):443–450, 1990.

    PubMed  CAS  Google Scholar 

  7. Isono S, Remmers JE, Tanaka A, Sho Y, Sato J, Nishino T: Anatomy of pharynx in patients with obstructive sleep apnea and in normal subjects. J Appl Physiol 82(4):1319–1326, 1997.

    PubMed  CAS  Google Scholar 

  8. Katz ES, White DP: Genioglossus activity during sleep in normal control subjects and children with obstructive sleep apnea. Am J Respir Crit Care Med 170(5):553–560, 2004.

    Article  PubMed  Google Scholar 

  9. Kimoff RJ, Sforza E, Champagne V, Ofiara L, Gendron D: Upper airway sensation in snoring and obstructive sleep apnea. Am J Respir Crit Care Med 164: 250–255, 2001.

    PubMed  CAS  Google Scholar 

  10. Larsson H, Carlsson-Nordlander B, Lindblad LE, Norbeck O, Svanborg E: Temperature thresholds in the oropharynx of patients with obstructive sleep apnea syndrome. Am Rev Respir Dis 146: 1246–1249, 1992.

    PubMed  CAS  Google Scholar 

  11. Malhotra A, Pillar G, Fogel RB, Beauregard J, Edwards JK, Slamowitz DI, et al.: Genioglossal but not palatal muscle activity relates closely to pharyngcal pressure. Am J Respir Crit Care Med 162(3 Pt 1):1058–1062, 2000.

    PubMed  CAS  Google Scholar 

  12. Mezzanotte WS, Tangel DJ, White DP: Waking genioglossal electromyogram in sleep apnea patients versus normal controls (a neuromuscular compensatory mechanism). J Clin Invest 89: 1571–1579, 1992.

    Article  PubMed  CAS  Google Scholar 

  13. Mezzanotte WS, Tangel DJ, White DP: Influence of sleep onset on upper-airway muscle activity in apnea patients versus normal controls. Am J Respir Crit Care Med 153(6 Pt 1):1880–7, 1996.

    PubMed  CAS  Google Scholar 

  14. Mortimore IL, Douglas NJ: Palatopharyngeus has respiratory activity and responds to negative pressure in sleep apnocics. Eur Respir J 9(4):773–778, 1996.

    Article  PubMed  CAS  Google Scholar 

  15. Mortimore IL, Mathur R, Douglas NJ: Effect of posture, route of respiration, and negative pressure on palatal muscle activity in humans. J Appl Physiol 79(2):448–454, 1995.

    PubMed  CAS  Google Scholar 

  16. Pillar G, Malhotra A, Fogel RB, Beauregard J, Slamowitz DI, Shea SA, et al.: Upper airway muscle responsiveness to rising PCO2 during NREM sleep. J Appl Physiol 89(4):1275–1282, 2000.

    PubMed  CAS  Google Scholar 

  17. Randerath WJ, Bauer M, Blau A, Fietze I, Galetke W, Hein H: Stellenwert der Nicht-nCPAP-Verfahren in der Therapie des obstruktiven Schlafapnoe-Syndroms. Somnologie 10: 67–98, 2006.

    Article  Google Scholar 

  18. Randerath WJ, Heise M, Hinz R, Ruehle KH: An individually adjustable oral appliance vs continuous positive airway pressure in mild-to-moderate obstructive sleep apnea syndrome. Chest 122(2):569–575, 2002.

    Article  PubMed  Google Scholar 

  19. Randerath WJ, Galetke W, Domanski U, Weitkunat R, Ruhle KH: Tongue-muscle training by intraoral electrical neurostimulation in patients with obstructive sleep apnea. Sleep 15: 27(2): 254–259, 2004.

    Google Scholar 

  20. Remmers JE, de Groot WJ, Sauerland EK, Anch AM: Pathogenesis of upper airway occlusion during sleep. J Appl Physiol 44(6):931–938, 1978.

    PubMed  CAS  Google Scholar 

  21. Sinclair S, Roach MR: Effect of vibration on isolated dog bronchi. J Appl Physiol 38: 780–785, 1975.

    PubMed  CAS  Google Scholar 

  22. Smirne S, Iannaccone S, Ferini-Strambi L., Comola M, Colombo E, Nemni R: Muscle fibre type and habitual snoring. Lancet 337: 597–599, 1991.

    Article  PubMed  CAS  Google Scholar 

  23. Strohl KP, Hensley MJ, Hallett M, Saunders NA, Ingram RH Jr: Activation of upper airway muscles before onset of inspiration in normal humans. J Appl Physiol 49(4):638–642, 1980.

    PubMed  CAS  Google Scholar 

  24. Suratt P, McTier RF, Wilhoit SC: Upper airway muscle activation is augmented in patients with obstructive sleep apnea compared with that in normal subjects. Am Rev Respir Dis 137: 889–894, 1988.

    PubMed  CAS  Google Scholar 

  25. Svanborg E: Impact of obstructive sleep apnea syndrome on upper airway respiratory muscles. Respir Physiol Neurobiol 147: 263–272, 2005.

    Article  PubMed  Google Scholar 

  26. Svanborg E.: Upperairway muscles in obstructive respiratory sleep disorders. In: Randerath W, Sanner B, Smers V (eds): Sleep apnea —current diagnosis and treatment. 1 stedition, Karger, Basel, 2006.

    Google Scholar 

  27. Tangel DJ, Mezzanotte WS, White DP: Influence of sleep on tensor palatini EMG and upper airway resistance in normal men. J Appl Physiol 70(6):2574–2581, 1991.

    PubMed  CAS  Google Scholar 

  28. Trudo FJ, Gefter WB, Welch KC, Gupta KB, Maislin G, Schwab RJ: State-related changes in upper airway caliber and surrounding soft-tissue structures in normal subjects. Am J Respir Crit Care Med 158(4):1259–1270, 1998.

    PubMed  CAS  Google Scholar 

  29. Van Lunteren E: Muscles of the pharynx: structural and contractile properties. Ear Nose Throat J 72: 2733–2739, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Randerath, W.J., Galetke, W. Die Muskulatur der oberen Atemwege: Strukturelle und pathophysiologische Aspekte beim obstruktiven Schlafapnoe-Syndrom. Somnologie 10, 201–204 (2006). https://doi.org/10.1111/j.1439-054X.2006.00103.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1439-054X.2006.00103.x

Schlüsselwörter

Keywords

Navigation