Skip to main content
Log in

A review of sleep EEG patterns. Part I: A compilation of amended rules for their visual recognition according to Rechtschaffen and Kales

Eine Übersicht über Schlaf-EEG-Muster. Teil I: Eine Zusammenstellung mit ergänzenden Regeln zu deren visueller Analyse

  • Original Articles
  • Published:
Somnologie - Schlafforschung und Schlafmedizin Aims and scope Submit manuscript

Summary

Question of the study

The reliable evaluation of polysomnographic recordings (PSG) is an essential precondition for good clinical practice in sleep medicine. Although the scoring rules of Rechtschaffen and Kales [86] are internationally well established, they leave some room for different interpretations, and this may contribute to the limited reliability of visual sleep scoring. The German Sleep Society (DGSM) has set up a task force to devise ways to improve scoring reliability in the framework of their quality management programme. The intention was not to revise the rules of Rechtschaffen and Kales (R&K), but to facilitate their reliable application in sleep scoring and to support the development of standardized algorithms for computerized sleep analysis.

Methods

The task force was formed in September 2004 as a subcommittee of the educational panel of the DGSM: The members of the task force are experienced in sleep scoring and have a background either in physiology, neurology, psychiatry, psychology, or biology. The aim of the task force was to provide interpretation aids and, if needed, specifications or amendments to the R&K rules for the scoring of sleep electroencephalogram (EEG) waveforms and patterns. Decisions were based on the nominal group technique of a nominal panel as the formal consensus-building process. The consensus process was based on scoring and face-to-face discussions of at least 40 examples for each pattern in four 2-day meetings.

Results

Relevant EEG patterns for sleep stage scoring are alpha, theta, and delta waves, sleep spindles, K-complexes, vertex sharp waves, and sawtooth waves. If definitions for a given EEG pattern differed in the literature, the nominal group technique resulted in specifications and amended scoring rules for these EEG patterns. A second part including a series of examples with explanatory comments for each of these EEG patterns is under preparation.

Conclusions

Amendatory scoring rules of those EEG patterns that are relevant for sleep scoring may contribute to increasing the reliability of visual sleep scoring and to support the development of standardized algorithms for computerized sleep analysis.

Zusammenfassung

Einleitung

Die reliable Evaluation polysomnographischer Ableitungen ist eine wesentliche Voraussetzung für die Gute Klinische Praxis (GCP) in der Schlafmedizin. Obwohl die Auswertungsregeln von Rechtschaffen und Kales (R&K) [86] international gut etabliert sind, lassen diese einigen Interpretationsspielraum. Dies wird als ein möglicher Grund für die relativ eingeschränkte Reliabilität visueller Auswertungen angesehen. Die Deutsche Gesellschaft für Schlafforschung und Schlafmedizin (DGSM) hat daher eine Task Force eingerichtet, die im Rahmen des Qualitätsmanagementprogramms der DGSM Vorschläge zur Verbesserung der Auswertungsreliabilität ausarbeiten soll. Die Intention dieser Task Force ist es nicht, die Regeln von R&K zu revidieren, sondern vielmehr deren reliable Anwendung in der Auswertung von Polysomnographien zu ermöglichen und damit auch die Entwicklung von standardisierten Algorithmen in der computerisierten Schlafanalyse zu unterstützen.

Prozedere

Die Task Force bildete sich im September 2004 als eine Untergruppe der AG Ausbildung der DGSM. Die Task Force Mitglieder sind erfahren in der Schlafauswertung und sind entweder Physiologen, Neurologen, Psychiater, Psychologen oder Biologen. Das Ziel der Task Force war die Bereitstellung von Interpretationshilfen und—wenn notwendig—von Spezifikationen oder Ergänzungen zu den R&K Regeln zur Erfassung von EEG-Wellenformen und-Mustern. Die Entscheidungen basierten auf einem nominalen Gruppenprozess als formales Konsensusverfahren. Für jedes Element beruhte der Konsens auf der Auswertung mit Gruppendiskussion von mindestens 40 Beispielen pro Wellenform oder EEG-Muster unter Berücksichtigung der Literatur im Rahmen von 4 zweitägigen Treffen.

Ergebnisse

Relevante EEG-Muster für die Schlafstadienanalyse sind alpha-, theta- und delta-Wellen, Vertexwellen, Schlafspindeln, K-Komplexe und Sägezahnwellen. Sobald die Definitionen für eines dieser Muster in der Literatur divergierten, führte der nominale Gruppenprozess zu Spezifikationen und Ergänzungen der Angaben von R&K. Ein zweiter Publikationsteil in dem die hier erstellten Spezifikationen an einer größeren Anzahl von Beispielen dargestellt werden, ist derzeit in Vorbereitung.

Diskussion

Die hier vorgestellten spezifizierten und ergänzten Erfassungsregeln für EEG-Muster mit Relevanz für die Schlafstadienanalyse sollen die Reliabilität der visuellen Auswertung verbessern. Gleichzeitig können die Ergebnisse als Grundlage für einen standardisierten Algorithmus der computerisierten Analyse genutzt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aeschbach D, Matthews JR, Postolache TT, Jackson MA, Giesen HA, Wehr TA: Dynamics of the human EEG during prolonged wakefulness: evidence for frequency-specific circadian and homeostatic influences. Neurosci Lett 239: 121–124, 1997.

    Article  PubMed  CAS  Google Scholar 

  2. Aldrich M: Sawtooth waves. In: Carskadon MA (ed.): Encyclopedia of sleep and dreaming. Macmillan, New York, pp 527–528, 1993.

    Google Scholar 

  3. Amzica F, Steriade M: The functional significance of K-complexes. Sleep Med Rev 6: 139–149, 2002.

    Article  PubMed  Google Scholar 

  4. Anders T, Emde R, Parmelee A: A manual of standardized terminology, techniques, and criteria for scoring of states of sleep and wakefulness in newborn infants. UCLA Brain Information Service, NINDS Neurological Information Network, Los Angeles, 1971.

    Google Scholar 

  5. Armitage R, Baker FC, Parry BL: The menstrual cycle and circadian rhythms. In: Kryger MH, Roth T, Dement WC (eds.): Principles and practice in sleep medicine. 4th edition, Saunders, Philadelphia, pp 1266–1277, 2005.

    Google Scholar 

  6. Atlas Task Force of the American Sleep Disorders Association: EEG-arousals: scoring rules and examples. A preliminary report from the sleep disorders. Sleep 15: 173–184, 1992.

    Google Scholar 

  7. Bassetti CL: Sleep and stroke. In: Kryger MH, Roth T, Dement WC eds.): Principles and practice of sleep medicine. 4th edition, Saunders, Philadelphia, pp 811–830, 2005.

    Google Scholar 

  8. Bastien C, Campbell K: The evoked K-complex: all-or-none phenomenon? Sleep 15: 236–245, 1992.

    PubMed  CAS  Google Scholar 

  9. Bastien CH, Crowley KE, Colrain IM: Evoked potential components unique to non-REM sleep: relationship to evoked K-complexes and vertex sharp waves. Int J Psychophysiol 46: 257–274, 2002.

    Article  PubMed  Google Scholar 

  10. Beier KM, Kubicki S: Kortikale Verteilung zweier δ-Frequenzen im langsamen Schlaf. Z EEG-EMG 18: 47–51, 1987.

    CAS  Google Scholar 

  11. Berger H: Über das Elektrenkephalogramm des Menschen. Arch Psychiat Nervenkr 87: 527–570, 1929.

    Article  Google Scholar 

  12. Berger RJ, Olley P, Oswald I: The EEG, eye movements and dreams of the blind. Q J Exp Pychol 14: 192–186, 1962.

    Google Scholar 

  13. Bliwise DL: Normal aging. In: Kryger MH, Roth T, Dement WC (eds.): Principles and practice in sleep medicine. 4th edition, Saunders, Philadelphia, pp 24–38, 2005.

    Google Scholar 

  14. Bonnet MH, Moore SE: The threshold of sleep: perception of sleep as a function of time asleep and auditory threshold. Sleep 5: 267–276, 1982.

    PubMed  CAS  Google Scholar 

  15. Borbély, AA: A two process model of sleep regulation. Hum Neurobiol 1: 195–204, 1982.

    PubMed  Google Scholar 

  16. Bové A, Culebras A, Moore JT, Westlake RE: Relationship between sleep spindles and hypersomnia. Sleep 17: 449–455, 1994.

    PubMed  Google Scholar 

  17. Brazier MA: Preliminary proposal for an EEG terminology by the Terminology Committee of the International Federation for Electroencephalography and Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol 13: 646–650, 1961.

    Article  PubMed  CAS  Google Scholar 

  18. Broughton R, Hasan J: Quantitative topographic electroencephalographic mapping during drowsiness and sleep onset. J Clin Neurophysiol 12: 372–386, 1995.

    PubMed  CAS  Google Scholar 

  19. Butkov N: Atlas of clinical polysomnography. Vol I & II. Synapse Media. Medford, OR, 1996.

    Google Scholar 

  20. Cantero JL, Atienza M, Salas RM: Spectral features of EEG alpha activity in human REM sleep: two variants with different functional roles? Sleep 23: 746–750, 2000.

    PubMed  CAS  Google Scholar 

  21. Cape EG, Manns ID, Alonso A, Beaudet A, Jones BE: Neurotensin-induced bursting of cholinergic forebrain neurons promotes gamma and theta cortical activity together with waking and paradoxical sleep. J Neurosci 20: 8452–8461, 2000.

    PubMed  CAS  Google Scholar 

  22. Carskadon MA, Rechtschaffen A: Monitoring and staging human sleep. In: Kryger MH, Roth T, Dement WC (eds.): Principles and practice in sleep medicine. 4th edition. Saunders. Philadelphia, pp 1359–1393, 2005.

    Google Scholar 

  23. Clarenbach P (ed.): Schering-Lexikon Schlafmedizin. 2nd edition, MMV Medizin Verlag, Munich, 1998.

    Google Scholar 

  24. Colrain IM: The K-complex: a 7-decade history. Sleep 28: 255–273, 2005.

    PubMed  Google Scholar 

  25. Colrain IM, Webster KE, Irst GH, Campbell KB: The roles of vertex sharp waves and K-complexes in the generation of N300 in auditory and respiratory-related evoked potentials during early stage 2 NREM sleep. Sleep 23: 97–106, 2000.

    PubMed  CAS  Google Scholar 

  26. Cote KA, de Lugt DR, Langley SD, Campbell KB: Scalp topography on the auditory evoked K-complex in stage 2 and slow wave sleep. J Sleep Res 8: 263–272, 1999.

    Article  PubMed  CAS  Google Scholar 

  27. Crowley K, Trinder J, Kim Y, Carrington M, Colrain IM: The effects of normal aging on sleep spindle and K-complex production. Clin Neurophysiol 113: 1615–1622, 2002.

    Article  PubMed  Google Scholar 

  28. Daan S, Beersma DGM, Borbély AA: The timing of human sleep: recovery process gated by a circadian pacemaker. Am J Physiol 246: R161-R178, 1984.

    PubMed  CAS  Google Scholar 

  29. Danker-Hopfe H, Kunz D, Gruber G, Klösch G, Lorenzo JL, Himanen SL, Kemp B, Penzel T, Röschke J, Dorn H, Schlögl A, Trenker E, Dorfner G: Interrater reliability between scorers from eight European sleep laboratories in subjects with different sleep disorders. J Sleep Res 13: 63–69, 2004.

    PubMed  Google Scholar 

  30. De Gennaro L, Ferrara M: Sleep spindles: an overview. Sleep Med Rev 7: 423–440, 2003.

    Article  PubMed  Google Scholar 

  31. De Gennaro L, Ferrara M, Bertini M: The spontaneous K-complex during stage 2 sleep: is it a ‘forerunner’ of delta waves? Neurosci Lett 291: 41–43, 2000.

    Article  PubMed  Google Scholar 

  32. Dijk DJ, Shanahan TL, Duffy JF, Ronda JM, Czeisler CA: Variation of electroencephalographic activity during non-rapid eye movement and rapid eye movement sleep with phase of circadian melatonin rhythm in humans. J Physiol 505: 851–858, 1997.

    Article  PubMed  CAS  Google Scholar 

  33. Duffy FH, Albert MS, McAnulty G, Garvey AJ: Age-related differences in brain electrical activity of healthy subjects. Ann Neurol 16: 430–438, 1984.

    Article  PubMed  CAS  Google Scholar 

  34. Ehrhart J, Ehrhart M, Muzet A, Schieber JP, Naitoh P: K-complexes and sleep spindles before transient activation during sleep. Sleep 4: 400–407, 1981.

    PubMed  CAS  Google Scholar 

  35. Epstein HT: EEG developmental stages. Develop Psychol 13: 629–631, 1980.

    Article  CAS  Google Scholar 

  36. Feinberg I, Floyd TC: Systematic trends across the night in human sleep cycles. Psychophysiol 16: 283–291, 1979.

    CAS  Google Scholar 

  37. Finelli LA, Baumann H, Borbély AA, Achermann P: Dual electroencephalogram markers of human sleep homeostasis: correlation between theta activity in waking and slow-wave activity in sleep. Neuroscience 101: 523–529, 2000.

    Article  PubMed  CAS  Google Scholar 

  38. Franken P, Malafosse A, Tafti M: Genetic variation in EEG activity during sleep in inbred mice. Am J Physiol 275: R1127-R1137, 1998.

    PubMed  CAS  Google Scholar 

  39. Gaillard JM, Blois R: Spindle density in sleep of normal subjects. Sleep 4: 385–391, 1981.

    PubMed  CAS  Google Scholar 

  40. Gais S, Born J: Declarative memory consolidation: mechanisms acting during human sleep. Learn Mem 11: 679–685, 2004.

    Article  PubMed  Google Scholar 

  41. Gais S, Molle M, Helms K, Born J: Learning-dependent increase in sleep spindle density. J Neurosci 22: 6830–6834, 2002.

    PubMed  CAS  Google Scholar 

  42. Geisler P, Meier-Ewert K, Matsubayshi K: Rapid eye movements, muscle twitches and sawtooth waves in the sleep of narcoleptic patients and controls. Electroencephal Clin Neurophysiol 67: 499–507, 1987.

    Article  CAS  Google Scholar 

  43. Geyer JD, Payne TA, Carney PR, Aldrich MS: Atlas of digital polysomnography. Lippincott Williams & Wilkins, Philadelphia, 2000.

    Google Scholar 

  44. Guazzelli M, Feinberg I, Aminoff M, Fein G, Floyd TC, Maggini C: Sleep spindles in normal elderly: comparison with young adult patterns and relation to nocturnal awakening, cognitive function and brain atrophy. Electroencephal Clin Neurophysiol 63: 526–539, 1986.

    Article  CAS  Google Scholar 

  45. Halász P: K-complex, a reactive EEG graphoelement of NREM sleep: an old chap in a new garment. Sleep Med Rev 9: 391–412, 2005.

    Article  PubMed  Google Scholar 

  46. Harris CD: Neurophysiology of sleep and wakefulness. Respir Care Clin 11: 567–586, 2005.

    Google Scholar 

  47. Harsh J, Voss U, Hull J, Schrepfer S, Badia P: ERP and behavioural changes during the wake/sleep transition. Psychophysiol 31: 244–252, 1994.

    CAS  Google Scholar 

  48. Hauri P, Hawkins DR: Alpha-delta sleep. Electroencephal Clin Neurophysiol 34: 233–237, 1973.

    Article  CAS  Google Scholar 

  49. Herrmann WM, Schärer E: Pharmako-EEG, Ecomed, Landsberg, pp 14–15, 1987.

    Google Scholar 

  50. Himanen SL, Hasan J: Limitations of Rechtschaffen and Kales. Sleep Med Rev 4: 149–167, 2000.

    Article  PubMed  Google Scholar 

  51. Hori T, Hayashi M, Morikawa T: Topographic EEG changes and the hypnagogic experience. In: Ogilvie RD, Harsh (eds): Sleep onset: normal and abnormal processes. American Psychological Association, Washington, DC, 1994.

    Google Scholar 

  52. Hori A, Kazukawa S, Endo M, Kurachi M: Sleep spindles in twins. Clin Electroencephal 20: 121–127, 1989.

    CAS  Google Scholar 

  53. Hori T, Sugita Y, Koga E, Shirakawa S, Inoue K, Uchida S, Kuwahara H, Kousaka M, Kobayashi T, Tsuji Y, Terashima M, Fukuda K, Fukuda N: Proposed supplements and amendments to ‘A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects’, the Rechtschaffen & Kales (1968) standard. Psychiatry Clin Neurosci 55: 305–310, 2001.

    Article  PubMed  CAS  Google Scholar 

  54. Hornyak M, Cejnar M, Elam M, Matousek M, Wallin BG: Sympathetic muscle nerve activity during sleep in man. Brain 114: 1281–1295, 1991.

    PubMed  Google Scholar 

  55. Hughes JR: The development of the vertex sharp transient. Clin Electroencephal 29: 183–187, 1998.

    CAS  Google Scholar 

  56. Hughes SW, Lörincz M, Cope DW, Blethyn KL, Kékesi KA, Parri R, Juhász G, Crunelli V: Synchronized oscillations at α and π frequencies in the lateral geniculate nucleus. Neuron 42: 253–268, 2004.

    Article  PubMed  CAS  Google Scholar 

  57. Jankel WR, Niedermeyer E: Sleep spindles. J Clin Neurophysiol 2: 1–35, 1985.

    Article  PubMed  CAS  Google Scholar 

  58. Jobert M, Poiseau E, Jähnig P, Schulz H, Kubicki S: Topographical analysis of sleep spindle activity. Neuropsychobiol 26: 210–217, 1992.

    CAS  Google Scholar 

  59. Johnson LC, Karpan WE: Autonomic correlates of the spontaneous K-complex. Psychophysiol 4: 444–452, 1968.

    CAS  Google Scholar 

  60. Jouvet M, Michel F, Mounier D: Analyse électroencéphalographique comparée du sommeil physiologique chez le chat et chez l'homme. Rev Neurol 103: 189–204, 1960.

    PubMed  CAS  Google Scholar 

  61. Knowles JB, MacLean AW, Salem L, Vetere C, Coulter M: Slow-wave sleep in daytime and nocturnal sleep: an estimate of the time course of ‘Process S’. J Biol Rhythms 1: 303–308, 1986.

    PubMed  CAS  Google Scholar 

  62. Kubicki S: Vigilanz und Schlaf. In: Zschocke S (ed.): Klinische. Elektroenzephalographie, 2nd edition, Springer, Berlin, 2002.

    Google Scholar 

  63. Kubicki S, Haag-Wüsthoff C, Röhmel J, Hermann WM, Scheuler W: The pharmacodynamic influence of three benzodiazepines on rapid eye movements, K-complexes and sleep spindles in healthy volunteers. Hum Psychopharmacol 3: 247–255, 1988.

    Article  CAS  Google Scholar 

  64. Kubicki S, Hermann WM, Höller L, Scheuler W: Kritische Bemerkungen zu den Regeln von Rechtschaffen und Kales über die visuelle Auswertung von Schlaf-EEG-Aufzeichnungen. EEG EMG Z 13: 51–60, 1982.

    CAS  Google Scholar 

  65. Kubicki S, Scheuler W, Jobert M, Pastelak-Price C: Der Einfluß des Alters auf die Schlafspindel- und K-Komplex-Dichte. Z EEG-EMG 20: 59–63, 1989.

    CAS  Google Scholar 

  66. Liberson WT: Problem of sleep and mental disease. Digest Neurol Psychiat 12: 93–108, 1944.

    Google Scholar 

  67. Loomis AL, Harvey EN, Hobart GA: Electrical potentials of the human brain. J Exp Psychol 19: 249–279, 1936.

    Article  Google Scholar 

  68. Loomis AL, Harvey EN, Hobart GA: Distribution of disturbance patterns in the human electroencephalogram, with special reference to sleep. J Neurophysiol 1: 413–430, 1938.

    Google Scholar 

  69. MacLean AW, Lue F, Moldofsky H: The reliability of visual scoring of alpha EEG activity during sleep. Sleep 18: 565–569, 1995.

    PubMed  CAS  Google Scholar 

  70. Maret S, Franken P, Dauviliers Y, Ghyselinck NB, Chambon P, Tafti M: Retinoic acid signalling affects cortical synchrony during sleep. Science 310: 111–113, 2005.

    Article  PubMed  CAS  Google Scholar 

  71. McCormick L, Nielsen T, Nicolas A, Ptito M, Montplaisir J: Topographical distribution of spindles and K-complexes in normal subjects. Sleep 20(1): 939–941, 1997.

    PubMed  CAS  Google Scholar 

  72. Merica H, Fortune RD: State transitions between wake and sleep, and within the ultradian cycle, with focus on the link to neuronal activity. Sleep Med Rev 8: 473–485, 2004.

    Article  PubMed  Google Scholar 

  73. Nicholas CL, Trinder J, Colrain IM: Increased production of evoked and spontaneous K-complexes, following a night of fragmented sleep. Sleep 25: 42–47, 2002.

    Google Scholar 

  74. Niedermeyer E: Sleep and EEG. In: Niedermeyer E, Lopes da Silva F (eds.): Electroencephalography: basic principles, clinical applications, and related fields. Williams and Wilkins, Baltimore, pp 193–207, 2005.

    Google Scholar 

  75. Niedemeyer E: Maturation of the EEG: development of waking and sleeping patterns. In: Niedermeyer E, Lopes da Silva F (eds.): Electroencephalography: basic principles, clinical applications, and related fields. Williams and Wilkins, Baltimore, pp 167–191, 1993.

    Google Scholar 

  76. Noachtar S, Binnie C, Ebersole J, Mauguière F, Sakamoto A, Westmoreland B: A glossary of terms most commonly used by clinical electroencephalographers and proposal for the report form for the EEG findings. The International Federation of Clinical Neurophysiology. Electrocenphalogr Clin Neurophysiol Suppl 52: 21–41, 1999.

    CAS  Google Scholar 

  77. Noachtar S, Binnie C, Ebersole J, Mauguière F, Sakamoto A, Westmoreland B: Glossar der meistgebrauchten Begriffe in der klinischen Elektroenzephalographie und Vorschläge für die EEG-Befunderstellung. Klin Neurophysiol 35: 5–21, 2004.

    Article  Google Scholar 

  78. Norman RG, Pal I, Steward C, Walsleben JA, Rapoport DM: Interobserver aggrement among sleep scorers from different centers in a large dataset. Sleep 23: 901–908, 2000.

    PubMed  CAS  Google Scholar 

  79. Ohayon MM, Carskdon MA, Guilleminault C, Vitiello MV: Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: developing nomative sleep values across the human lifespan. Sleep 27: 1255–1273, 2004.

    PubMed  Google Scholar 

  80. Paiva T, Rosa A: K-complex variability in normal subjects. In: Terzano MG, Halász P, Declerck AC (eds.): Phasic events and dynamic organization of sleep. Raven Press, New York, pp 167–184, 1991.

    Google Scholar 

  81. Pascualy R, Buchwald D: Chronic fatigue syndrome and fibromyalgia. In: Kryger MH, Roth T, Dement WC (eds.): Principles and practice of sleep medicine. 3rd edition, Saunders, Philadelphia, pp 1040–1050, 2000.

    Google Scholar 

  82. Pearl PL, LaFleur BJ, Reigle SC, Rich AS, Freeman AA, McCutchen C, Sato S: Sawtooth wave density analysis during REM sleep in normal volunteers. Sleep Med 3: 255–258, 2002.

    Article  PubMed  Google Scholar 

  83. Penzel T, Behler PG, von Buttlar M, Conradt R, Meier M, Möller A, Danker-Hopfe H: Reliabilität der visuellen Schlafauswertung nach Rechtschaffen und Kales von acht Aufzeichnungen durch neun Schlaflabore. Somnologie 7: 49–58, 2003.

    Article  Google Scholar 

  84. Peszka J, Harsh J: Effect of sleep deprivation on NREM sleep ERPs and related activity at sleep onset. Int J Psychophysiology 46: 275–286, 2002.

    Article  CAS  Google Scholar 

  85. Principe JC, Smith JR: Sleep spindle characteristics as a function of age. Sleep 5: 73–84, 1982.

    PubMed  CAS  Google Scholar 

  86. Rechtschaffen A, Kales A (eds.): A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. BIS/BRI, UCLA, Los Angeles, 1968.

    Google Scholar 

  87. Rechtschaffen A, Kales A (eds.): Ein Manual der standardisierten Teminologie, Techniken und Auswertung, der Schlafstadien beim Menschen. Dtsch. Übersetzung. In: Kompendium Schlafmedizin. Ecomed, Landsberg/Lech, 2002.

    Google Scholar 

  88. Roth B: The clinical and theoretical importance of EEG rhythms corresponding to states of lowered vigilance. EEG Clin Neurophysiol 13: 395–399, 1961.

    Article  CAS  Google Scholar 

  89. Sato S, McCutchen C, Graham B, Freeman A, von Albertini-Carletti I, Alling DW: Relationship between muscle tone changes, sawtooth waves and rapid eye movements during sleep. EEG Clin Neurophysiol 103: 627–632: 1997.

    Article  CAS  Google Scholar 

  90. Scheuler W, Stinshoff D, Kubicki S: The alpha-sleep pattern. Differentiation from other sleep patterns, and effect of hypnotics. Neuropsychobiol 10: 183–189, 1983.

    Article  CAS  Google Scholar 

  91. Schneider-Helmert D, Kumar A: Sleep, its subjective perception, and daytime performance in insomniacs with pattern of alpha sleep. Biol Psychiat 37: 99–105, 1995.

    Article  PubMed  CAS  Google Scholar 

  92. Scholle S, Schäfer T: Atlas of states of sleep and wakefulness in infants and children. Somnologie 3: 163–241, 1999.

    Article  Google Scholar 

  93. Schulz H, Meier J, Walther BW: The temporal distribution of sawtooth waves at the onset of REM sleep. Somnologie 9 (Suppl 1): 48, 2005.

    Google Scholar 

  94. Schwartz B: EEG et mouvement oculaires dans le sommeil de nuit. EEG Clin Neurophysiol 14: 126–128, 1962.

    Article  CAS  Google Scholar 

  95. Sekine A, Niiyama Y, Kutsuzawa O, Shimizu T: A negative component superimposed on event-related potentials during light drosiness. Psychiat Clin Neurosci 55: 473–478, 2001.

    Article  CAS  Google Scholar 

  96. Sforza E, Jouny C, Ibanez V: Cardiac activation during arousal in humans: further evidence for hierarchy in the arousal response. Clin Neurophysiol 111: 1611–1619, 2000.

    Article  PubMed  CAS  Google Scholar 

  97. Sheldon SH: Evaluating sleep in infants and children. Lippincott-Raven, Philadelphia, 1996.

    Google Scholar 

  98. Shepard JW: Atlas of sleep medicine. Futura Publishing, New York, 1991.

    Google Scholar 

  99. Shibagaki M, Kijono S, Watanabe K: Spindle, evolution in normal and mentally retarded children: a review. Sleep 5: 47–57, 1982.

    PubMed  CAS  Google Scholar 

  100. Smit DJ, Posthuma D, Boomsma DI, Geus EJ: Heritability of background EEG across the power spectrum. Psychophysiol 42: 691–697, 2005.

    Article  CAS  Google Scholar 

  101. Stampi C, Stone P, Michimori A: The alpha attenuation test: a new quantitative method for assessing sleepiness and its relationship to the MSLT. Sleep Res 22: 115, 1993.

    Google Scholar 

  102. Steriade M: Brain electrical activity and sensory processing during waking and sleep states. In: Kryger MH, Roth T, Dement WC (eds.): Principles and practice of sleep medicine. 4th edition, Elsevier, Philadelphia, pp 101–119, 2005.

    Google Scholar 

  103. Steriade M, Contreras D, Curro-Dossi R, Nunez A: The slow (<1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks. J Neurosci 13: 3284–3299, 1993.

    PubMed  CAS  Google Scholar 

  104. Steriade M, Domich L, Oakson G, Deschenes M: The deafferented reticular thalamic nucleus generates spindle rhythmicity. Neurophysiol 57: 260–273, 1987.

    CAS  Google Scholar 

  105. Steriade M, McCarley RW: Brainstem control of wakefulness and sleep. Plenum Press, New York, 1990.

    Google Scholar 

  106. Tafti M, Petit B, Chollet D, Neidhart E, de Bilbao F, Kiss JZ, Wood PA, Franken P: Deficiency in short-chain fatty acid beta-oxidation affects theta oscillations during sleep. Nat Gen 34: 320–325, 2003.

    Article  CAS  Google Scholar 

  107. Tanaka H, Hayashi M, Hori T: Topographic characteristics and principal component structure of the hypnagogic EEG. Sleep 20: 523–534, 1997.

    PubMed  CAS  Google Scholar 

  108. Terzano MG, Parrino L, Mennuni GF (eds.): Eventi Fasici e Microstrutura del Sonno/Phasic Events and Microstructure of Sleep (Consensus Conference). Martano Editore, Lecce, Italy, 1997.

    Google Scholar 

  109. Tononi G, Cirelli C: Sleep function and synaptic homeostasis. Sleep Med Rev 10: 49–62, 2006.

    Article  PubMed  Google Scholar 

  110. Ujszászi J, Halász P: Late component variants of single auditory revoked responses during NREM sleep stage 2 in man. EEG Clin Neurophysiol 64: 260–268, 1986.

    Article  Google Scholar 

  111. Walter WG: The electrocephalogram in cases of cerebral tumor. Proc R Soc Med 30: 579–598, 1937.

    CAS  PubMed  Google Scholar 

  112. Walter WG, Dovey VJ: Electroencephalography in cases of sub-cortical tumor. J Neurol Neurosurg Psychiat 7: 57–65, 1944.

    Article  Google Scholar 

  113. Weeß H-G, Steinberg R: Hypothese für einen cholinergen Mechanismus beim BZD-Entzug. In: Baumann (ed.): Biologische Psychiatrie der Gegenwart. Springer, Berlin, pp 626–629, 1993.

    Google Scholar 

  114. Wei HG, Riel E, Czeisler CA, Dijk DJ: Attenuated amplitude of circadian and sleep-dependent modulation of electroen-cephalographic sleep spindle characteristics in elderly human subjects. Neurosci Lett 260: 29–32, 1999.

    Article  PubMed  CAS  Google Scholar 

  115. Werth E, Achemann P, Dijk DJ, Borbély AA: Spindle frequency activity in the sleep EEG: individual differences and topographic distribution. EEG Clin Neurophysiol 103: 535–542, 1997.

    Article  CAS  Google Scholar 

  116. Williams RL, Karacan I, Hursch CJ: Electroencephalography (EEG) of human sleep: clinical applications. Wiley, New York, 1974.

    Google Scholar 

  117. Yamadori A: Role of spindles in the onset of sleep. J Med Sci 17: 97–111, 1971.

    CAS  Google Scholar 

  118. Zeitlhofer J, Gruber G, Anderer P, Asenbaum S, Schimicek P, Saletu B: Topographic distribution of sleep spindles in young healthy subjects. J Sleep Res 6: 149–155, 1997.

    Article  PubMed  CAS  Google Scholar 

  119. Zschocke S: Klinische Elektroenzephalographie. Springer, Berlin, 2002.

    Google Scholar 

  120. Zumsteg D, Hungerbühler H, Wieser HG: Atlas of adult electroencephalography. Hippocampus, Bad Honnef, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Andrea Rodenbeck.

Additional information

formerly Dept. of Pneumology, ASKLEPIOS Clinic Gauting, Germany

Rights and permissions

Reprints and permissions

About this article

Cite this article

Task Force ‘Scoring of Polysomnographic Recordings’ of the German Sleep Society (DGSM)., Rodenbeck, A., Binder, R. et al. A review of sleep EEG patterns. Part I: A compilation of amended rules for their visual recognition according to Rechtschaffen and Kales . Somnologie 10, 159–175 (2006). https://doi.org/10.1111/j.1439-054X.2006.00100.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1439-054X.2006.00100.x

Keywords

Schlüsselwörter

Navigation