Advertisement

Zungenmuskeltraining durch Elektrostimulation in der Therapie des obstruktiven Schlafapnoesyndroms

  • Winfried J. Randerath
  • Wolfgang Galetke
  • Ulrike Domanski
  • Rolf Weitkunat
  • Karl-Heinz Rühle
Article

Zusammenfassung

Fragestellung

Die kontinuierliche positive Druckatmung (CPAP) hat sich als hocheffektiv in der Behandlung des Schlafapnoesyndroms (OSAS) erwiesen. Dennoch suchen zahlreiche Patienten nach Möglichkeiten, die CPAP-Therapie durch andere Verfahren zu ersetzen. In einer placebokontrollierten, doppelblinden Studie konnte gezeigt werden, dass unter Training der Zungenmuskulatur mittels elektrischer Neurostimulation eine signifikante Verbesserung des Schnarchens zu erzielen war. In der hier vorgelegten Studie sollte nun überprüft werden, ob die Therapie auch bei OSAS, gemessen an der Anzahl von Respondern im Vergleich zu Placebo effektiv ist.

Patienten und Methodik

67 Patienten (AHI 10–40/h) wurden eingeschlossen, 57 Patienten beendeten die Studie. Sie nutzten das Training zweimal täglich für je 20 Minuten über acht Wochen. Response wurde als Verminderung des AHI auf Werte unter 10/h, verbunden mit klinischer Beschwerdebesserung, definiert.

Ergebnisse

Im Mittel war eine Verbesserung des AHI nicht nachzuweisen. Unter Verum fanden sich 6, unter Placebo keine Responder (P<0,01). Der Basis-AHI lag bei allen Respondern <25/h. Bei den Respondern wurde das Schnarchen um mehr als 50% vermindert (Basis 66,4±20,4 Epochen/h, nach Stimulation 28,4±24,5 Epochen/h, P<0,05), die tiefste Sauerstoffsättigung verbessert (Basis 82,2±4,7%, nach Training 87,4±3,6%, P<0,05) und die Gesamtzahl der Arousals sowie der respiratorisch bedingten Arousals reduziert.

Schlussfolgerung

Das Zungenmuskeltraining kann nicht generell als Alternative zur CPAP-Therapie empfohlen werden. Es fand sich jedoch eine relevante Verbesserung bei 19% der Patienten mit mildem Schlafapnoesyndrom (AHI≤25/h).

Schlüsselwörter

obstruktive Schlafapnoe CPAP Positivdruck-Atmung laryngeale Muskulatur Elektrostimulation transkutane elektrische Nervenstimulation 

Tongue muscle training by electrical neurostimulation in the treatment of obstructive sleep apnoea syndrome

Summary

Question of the study

Although continuous positive airway pressure is the treatment of choice in OSAS, compliance is not as good as might be expected. Electrical neurostimulation of the upper airway muscles as an alternative therapy option has proven effective in the treatment of snoring. We now address the question of whether tongue muscle training improves OSAS, measured by the number of responders, as compared to placebo.

Patients and methods

Sixty-seven patients with an apnoea/hypopnoea index (AHI) of 10–40/h were included; 57 completed the study. They practiced tongue muscle training during the daytime for 20 min twice a day for 8 weeks. Treatment response was defined as a reduction of the AHI to <10/h with improvement of clinical symptoms.

Results

There was no significant change in the AHI or the sleep profile either under placebo or stimulation. In the subgroup of treated patients with a baseline AHI<25/h, there were six patients (none under placebo, P<0.01) whose AHI decreased to less than 10/h. Moreover, significant improvements in snoring by 58.7±29.8% (baseline: 66.4±20.4 epochs/h; after training: 28.4±24.5 epochs/h, P<0.05), in minimal oxygen saturation (baseline: 82.2±4.7%; after training: 87.4±3.6% P<0.05) and in number of arousals were found in the responder subgroup.

Conclusions

Although tongue muscle training cannot generally be recommended, the method has proven to be effective in snoring and in terms of the AHI in 19% of patients with mild sleep apnoea.

Keywords

obstructive sleep apnoea CPAP positive pressure ventilation laryngeal muscles electrical stimulation transcutaneous electrical nerve stimulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Bishara H, Odeh M, Schnall RP, Gavriely N, Oliven A: Electrically-activated dilator muscles reduce pharyngeal resistance in anaesthetized dogs with upper airway obstruction. Eur Respir J 8: 1537–1542, 1995.PubMedGoogle Scholar
  2. [2]
    Block AJ, Faulkner JA, Hughes RL, Remmers JE, Thach B: Factors influencing upper airways closure. Chest 86: 114–122, 1984.PubMedGoogle Scholar
  3. [3]
    Cabric M, Appell HJ, Resic A: Effects of electrical stimulation of different frequencies on the myonuclei and fiber size in human muscle. Int J Sports Med 8: 323–326, 1987.PubMedCrossRefGoogle Scholar
  4. [4]
    Deegan PC, McNicholas WT: Pathophysiology of OSAS. In: McNicholas WT (ed): Respiratory disorders during sleep. European Respiratory Society Journals Sheffield, pp 28–62, 1998.Google Scholar
  5. [5]
    Eisele DW, Schwartz AR, Hari A, Thut DC, Smith PL: The effects of selective nerve stimulation on upper airway airflow mechanics. Arch Otolaryngol Head Neck Surg 121: 1361–1364, 1995.PubMedGoogle Scholar
  6. [6]
    Eisele DW, Smith PL, Alam DS, Schwartz AR: Direct hypoglossal nerve stimulation in obstructive sleep apnea. Arch Otolaryngol Head Neck Surg 123: 57–61, 1997.PubMedGoogle Scholar
  7. [7]
    Guilleminault C, Powell N, Bowman B, Stoohs R: The effect of electrical stimulation on obstructive sleep apnea syndrome. Chest 107: 67–73, 1995.PubMedGoogle Scholar
  8. [8]
    Isono S, Tanaka A, Nishino T: Effects of tongue electrical stimulation on pharyngeal mechanics in anaesthetized patients with obstructive sleep apnea. Eur Respir J 14: 1258–1265, 1999.PubMedCrossRefGoogle Scholar
  9. [9]
    Mann EA, Burnett T, Cornell S, Ludlow CL: The effect of neuromuscular stimulation of the genioglossus on the hypopharyngeal airway. Laryngoscope 112: 351–356, 2002.PubMedCrossRefGoogle Scholar
  10. [10]
    Mezzanotte WS, Tangel DJ, White DP: Waking genioglossal EMG in sleep apnea patients vs. normal controls (a neuromuscular compensatory mechanism). J Clin Invest 89: 1571–1579, 1992.PubMedCrossRefGoogle Scholar
  11. [11]
    Miki H, Hida W, Chonan T, Kikuchi Y, Takishima T: Effects of submental electrical stimulation during sleep on upper airway pateney with obstructive sleep apnea. Am Rev Resp Dis 140: 1285–1289, 1989.PubMedGoogle Scholar
  12. [12]
    Miki H, Hida W, Shindoh C, Kikuchi Y, Chonan T, Taguchi O, Inoue H, Takishima T: Effects of electrical stimulation of the genioglossus on upper airway resistance in anesthetized dogs. Am Rev Resp Dis 140: 1279–1284, 1989.PubMedGoogle Scholar
  13. [13]
    Odeh M, Schnall R, Gavriely N, Oliven A: Effect of upper airway muscle contraction on supraglottic resistance and stability. Respir Physiol 92: 139–150, 1993.PubMedCrossRefGoogle Scholar
  14. [14]
    Oliven A, Schnall RP, Pillar G, Gavriely N, Odeh M: Sublingual electrical stimulation of the tongue during wake fulness and sleep. Respir Physiol 127: 217–226, 2001.PubMedCrossRefGoogle Scholar
  15. [15]
    Randerath W, Galetke W, Domanski U, Weitkunat R, Rühle KH: Tongue muscle training by intraoral electrical neurostimulation in obstructive sleep apnea. Sleep, in press.Google Scholar
  16. [16]
    Randerath W, Heise M, Hinz R, Rühle KH: An individually adjustable oral appliance versus continuous positive airway pressure in mild obstructive sleep apnea syndrome. Chest 122: 569–575, 2002.PubMedCrossRefGoogle Scholar
  17. [17]
    Randerath W, Schraeder O, Galetke W, Feldmeyer F, Rühle KH: Auto-adjusting CPAP therapy based on impedance. Efficacy, compliance and acceptance. Am J Resp Crit Care Med 163: 652–657, 2001.PubMedGoogle Scholar
  18. [18]
    Rechtschaffen A, Kales A: A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. Brain Information Service, University of California. Los Angeles, 1968.Google Scholar
  19. [19]
    Remmers JE, de Groot WJ, Sauerland EK, Anch AM: Pathogenesis of upper airways occlusion during sleep. J Appl Physiol 44: 931–938, 1978.PubMedGoogle Scholar
  20. [20]
    Rosner B: Fundamentals of biostatistics. Wadsworth, Belmont, 1995.Google Scholar
  21. [21]
    Schwartz AR, Bennett ML, Smith PL, De Backer W, Hedner J, Boudewyns A, Van de Heyning P, Ejnell H, Hochban W, Knaack L, Podszus T, Penzel T, Peter JH, Goding GS, Erickson DJ, Testerman R, Ottenhoff F, Eisele DW: Therapeutic electrical stimulation of the hypoglossus nerve in obstructive sleep apnea. Arch Otolaryngol Head Neck Surg 127: 1216–1223, 2001.PubMedGoogle Scholar
  22. [22]
    Schwartz AR, Eisele DW, Hari A, Testerman R, Erickson D, Smith PL: Electrical stimulation of the lingual musculature in obstructive sleep apnea. J Appl Physiol 81: 643–652, 1996.PubMedGoogle Scholar
  23. [23]
    Series F, Mare I: Influence of genioglossus tonic activity on upper airway dynamics assessed by phrenic nerve stimulation. J Appl Physiol 92: 418–423, 2002.PubMedGoogle Scholar
  24. [24]
    Smith PL, Eisele DW, Podszus T, Penzel T, Grote L, Peter JH, Schwartz AR: Electrical stimulation of upper airway musculature. Sleep 19: S284-S287, 1996.PubMedGoogle Scholar
  25. [25]
    Sullivan CE, Issa FG, Berthon-Jones M, Eves L: Reversal of obstructive sleep apnea by continuous positive airway pressure applied through the nares. Lancet 1(8225): 862–865, 1981.PubMedCrossRefGoogle Scholar
  26. [26]
    Wehrle U, Dusterhoft S, Pette D: Effects of chronic electrical stimulation on myosin heavy chain expression in satellite cell cultures derived from rat musclers of different fiber-type composition. Differentiation 58: 37–46, 1994.PubMedCrossRefGoogle Scholar
  27. [27]
    Wiegand DA, Latz B, Zwillich CW, Wiegand L: Upper airway resistance and geniohyoid muscle activity in normal men during wakefulness and sleep. J Appl Physiol 69: 1252–1261, 1990.PubMedGoogle Scholar
  28. [28]
    Wiltfang J, Klotz S, Jordan W, Cohrs S, Engelke W, Ludwig A, Hajak G: Erste Ergebnisse zum Training der suprahyoidalen Muskulatur bei Probanden und einem Patienten mit obstruktiver Schlafapnoe. Somnologie 1: 160–164, 1997.Google Scholar

Copyright information

© Blackwell Verlag 2004

Authors and Affiliations

  • Winfried J. Randerath
    • 3
  • Wolfgang Galetke
    • 3
  • Ulrike Domanski
    • 1
  • Rolf Weitkunat
    • 2
  • Karl-Heinz Rühle
    • 1
  1. 1.Klinik Ambrock, HagenUniversität Witten/HerdeckeDeutschland
  2. 2.Institut für medizinische Informatik, Biometrie und EpidemiologieUniversität MünchenDeutschland
  3. 3.Krankenhaus Bethanien, Klinik für Pneumologie und AllergologieZentrum für Schlaf- und BeatmungsmedizinSolingenDeutschland

Personalised recommendations