Skip to main content
Log in

Numerical—experimental analysis of two floor platform designs for auxiliary construction truck

  • Technical Article
  • Published:
Experimental Techniques Aims and scope Submit manuscript

Abstract

In an auxiliary construction truck, the permanent deformations created by impact of rocks against the floor platform during the daily work generate the premature failure and need for replacement of the platform floor. This article shows the process followed in the analysis of two floor platforms for auxiliary construction trucks. This analysis has been carried out by means of the methodology developed in collaboration with truck manufacturer (ZAMARBU S.L) and the research group “New Technologies Applied on Vehicles and Road Safety” (VEHIVIAL) of the University of Zaragoza. The methodology applied in the floor platform development has been based on the application of numerical techniques by means of the finite element method (FEM) with explicit integration of dynamic equilibrium equation and the validation of the numerical results by means of experimental test. Applied load cases correspond to the impact of a sphere of 50, 150, and 250 kg. These load cases reproduce the impact caused by stones falling on the floor platform, which are the most restrictive for the floor design, because the vehicle’s rigidity and resistance against torsion and bending are provided for the chassis. The results of the analysis served to demonstrate the efficiency of the methodology developed for the optimization of the floor platform for auxiliary construction truck, getting an innovative floor platform design that improves the current models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Valladares, D., Castejon, L., Carrera, M., et al., “Comparative Analysis of Two Numerical Methods of Rollover Simulation of A Semitrailer For Hydrogen Transport,” Proceedings of the ASME International Design Engineering Technical Conferences/Computers and Information in Engineering Conference. San Diego, CA, pp. 1011–1019. 2009.

  2. Miralbes, R., and Castejon, L., Fatigue Design of Tanker Semi-Trailers, Dyna 85(6): 480–488 (2010).

    Article  Google Scholar 

  3. Carrera, M., Castejon, L., Miralbes, R., et al., Behaviour IA Rear Underrun Protection System on Car-to-Tank Vehicle Impact Used for Fuel Transportation, “International Journal of Heavy Vehicles Systems” 17(3–4): 199–215 (2010).

    Article  Google Scholar 

  4. Carrera, M., Castejon, L., Cuartero, J., et al., “Design of a Light Semi-Trailer Rear Bumper for Impact Protection According to 79/490/CEE Directive,” Proceedings of the ASME International Design Engineering Technical Conferences/Computers and Information in Engineering Conference. Las Vegas, NV. pp. 1151–1159. 2008.

  5. Li, M.H., Lam, F., and Lee, G., “Structural Assessment of Van Trailer Floor Systems with Aluminium Frame and Wood Decking”, International Journal of Heavy Vehicles Systems 14(2): 216–226 (2007).

    Google Scholar 

  6. Kodiyalam, S., and Sobieszczanski-Sobieski, J., “Multidisciplinary Design Optimization—Some Formal Methods, Framework Requirements, and Application to Vehicle Design”, International Journal of Vehicles Design 25(1–2): 3–22 (2001).

    Article  Google Scholar 

  7. Deng, Y.D., Wang, J., Wen, Y. et al., “The Static and Dynamic Characteristics Study of Aluminum Tank Semitrailer,” 2nd International Conference on Manufacturing Science and Engineering. Manufacturing Process Technology, PTS 1–5 Book Series: Advanced Materials Research, Volume 189–193, pp. 2233–2237, 2011.

  8. Cappello, F., Ingrassia, T., Mancuso, A. et al., “Methodical Redesign of a Semitrailer,” 9th International Conference on Computer Aided Optimum Design in Engineering. Computer Aided Optimum Design in Engineering IX Book Series: Wit Transactions on the Built Environment, Volume 80, pp. 359–369, 2005.

    Google Scholar 

  9. Hoefinghoff, J., Jungk, A., Knop, W., et al., “Using 3D Field Simulation for Evaluating UHF RFID Systems on Forklift Trucks”, IEEE Transactions on Antennas and Propagation 59(2): 689–691 (2011).

    Article  Google Scholar 

  10. Yucheng, L., “Development and Evaluation of a Finite Element Truck Chassis Crash Model”, International Journal of Crashworthiness 15(1): 107–113 (2010).

    Article  Google Scholar 

  11. Karaoglu, C., and Kuralay, N.S., “Stress Analysis of a Truck Chassis with Riveted Joints”, Finite Elements in Analysis and Design 38(12): 1115–1130 (2002).

    Article  Google Scholar 

  12. Beermann, H.J., “Static Analysis of Commercial Vehicle Frames –A Hybrid Finite-Elements and Analytical Method”, International Journal of Vehicle Design 5(1–2): 26–52 (1984).

    Google Scholar 

  13. Vallespin, D., Gil, E., Carrera, M. et al., “Proceso de diseño de un innovador concepto de vehículo tipo bañera para el transporte de materiales áridos.” Proceedings of the VI Congreso de Ingeniería del Transporte. Zaragoza, 2004.

  14. Carrera, M., Desarrollo de conceptos innovadores de semirremolques mediante la aplicación de técnicas numéricas y experimentales. Diseño de una bancada de ensayos de fatiga para su simulación frente a maniobras críticas. PhD Thesis, University of Zaragoza, 2006.

  15. Miralbes, R., Nuevo procedimiento de modelización y ensayo de semirremolques cisterna criogénicos autoportantes y su aplicación al diseño y optimización. PhD Thesis, University of Zaragoza, 2008.

  16. Malon, H., Desarrollo de un método innovador de análisis de comportamiento frente a cargas de fatiga de uniones soldadas y componentes estructurales de semirremolques. PhD Thesis, University of Zaragoza, 2010.

  17. Martin, J., Malon, H., and Castejon, L., “Validation of the Finite Elements Method Applied to Isotactic Polypropylene Homopolymers”, Polymers and Polymer Composites 16(7): 457–464 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Malon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malon, H., Castejon, L., Cuartero, J. et al. Numerical—experimental analysis of two floor platform designs for auxiliary construction truck. Exp Tech 39, 53–60 (2015). https://doi.org/10.1111/ext.12032

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1111/ext.12032

Keyword

Navigation