Human Cell

, Volume 16, Issue 1, pp 23–30

Plasticity of mesenchymal stem cells-regenerative medicine for diseased hearts-

Spotlight

Abstract

The phenomenon of regeneration is of growing interest to medical researchers. Until recently this was an area in which research in flatworms and newts predominated, but there is now a proliferation of research concerning regeneration in virtually all of the organs, not only the heart. One of the object is restoration of function to a failing heart through cell transplantation, and there have been many reports seeking donor sources of somatic stem cells, i.e.: stem cells in marrow or skeletal muscle and ES cells, beginning with those in embryonic myocardial cell transplant experiments. In particular, reports of mesenchymal stem cell differentiation into nerve cell, myocardial cell, skeletal muscle cell, and vascular endothelial cell series have drawn attention to cell plasticity, and clinical applications are awaited.

Key words

Mesenchymal stern cells Regeneration Transplantation Differentiation Heart 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference List

  1. 1).
    Bader D, Oberpriller JO. Repair and reorganization of minced cardiac muscle in the adult newt (Notophthalmus viridescens). J Morphol. 1978;155: 349–357.PubMedCrossRefGoogle Scholar
  2. 2).
    Weissman IL. Stem cells: units of development, units of regeneration, and units in evolution. Cell. 2000;100: 157–168.PubMedCrossRefGoogle Scholar
  3. 3).
    Prockop DJ. Marrow strornal cells as stem cells for nonhematopoietic tissues. Science. 1997;276: 71–74.PubMedCrossRefGoogle Scholar
  4. 4).
    Karsner HT, Saphir O, Todd TW. The state of the cardiac muscle in hypertrophy and atrophy. Am J Pathol. 1925;1: 351–371.PubMedGoogle Scholar
  5. 5).
    Nag AC, Carey TR, Cheng M. DNA synthesis in rat heart cells after injury and the regeneration of myocardia. Tissue Cell. 1983;15: 597–613.PubMedCrossRefGoogle Scholar
  6. 6).
    Brodsky W. Cell ploidy in the mammalian heart In: Oberpriller JO, Oberpriller JC, Mauro A, editors. The development and regenerative potential of cardiac muscle. London, UK: Harwood Academic Press, 1991: 253292.Google Scholar
  7. 7).
    Quaini F, Cigola E, Lagrasta C et al. End-stage cardiac failure in humans is coupled with the induction of proliferating cell nuclear antigen and nuclear mitotic division in ventricular myocytes. Czrc Res. 1994;75: 1050–1063.CrossRefGoogle Scholar
  8. 8).
    Beltrami AP, Urbanek K, Kajstura J et al. Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med. 2001;344: 1750–1757.PubMedCrossRefGoogle Scholar
  9. 9).
    Quaini F, Urbanek K, Beltrami AP et al. Chimerism of the transplanted heart. N Engl J Med. 2002;346: 5–15.PubMedCrossRefGoogle Scholar
  10. 10).
    Haynesworth SE, Goshima J, Goldberg VM et al. Characterization of cells with osteogenic potential from human marrow. Bone. 1992;13: 81–88.PubMedCrossRefGoogle Scholar
  11. 11).
    Imabayashi H, Mori T, Gojo S, et al. Redifferentiation of dedifferentiated chondrocytes and chondrogenesis of human bone marrow stromal cells via chondrosphere formation with expression profiling by large-scale cDNA analysis. Exp.Cell Res. in press.Google Scholar
  12. 12).
    Gimble JM, Youkhana K, Hua X et al. Adipogenesis in a myeloid supporting bone marrow stromal cell line. J Cell Biochem. 1992;50: 73–82.PubMedCrossRefGoogle Scholar
  13. 13).
    Gojo S, Gojo N, Takeda Y, et al. In vivo cardiovasculogenesis by direct injection of isolated adult mesenchymal stem cells. Exp. Cell Res. 2003;288: 51–59.PubMedCrossRefGoogle Scholar
  14. 14).
    Keyoung HM, Roy NS, Benraiss A et al. High-yield selection and extraction of two promoter-defined phenotypes of neural stem cells from the fetal human brain. Nat Biotechnol. 2001;19: 843–850.PubMedCrossRefGoogle Scholar
  15. 15).
    Osawa M, Hanada K, Hamada H et al. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science. 1996;273: 242–245.PubMedCrossRefGoogle Scholar
  16. 16).
    Tajima F, Sato T, Laver JH et al. CD34 expression by murine hematopoietic stem cells mobilized by granulocyte colony-stimulating factor. Blood. 2000;96: 1989–1993.PubMedGoogle Scholar
  17. 17).
    Goodell MA, Rosenzweig M, Kim H et al. Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med. 1997;3: 1337–1345.PubMedCrossRefGoogle Scholar
  18. 18).
    Jackson KA, Majka SM, Wang H et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest. 2001;107: 1395–1402.PubMedCrossRefGoogle Scholar
  19. 19).
    Suda J, Suda T, Ogawa M. Analysis of differentiation of mouse hemopoietic stem cells in culture by sequential replating of paired progenitors. Blood. 1984;64: 393399.Google Scholar
  20. 20).
    Soonpaa MH, Koh GY, Klug MG et al. Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium. Science. 1994;264: 98–101.PubMedCrossRefGoogle Scholar
  21. 21).
    Gojo S, Kitamura S, Hatano O et al. Transplantation of genetically marked cardiac muscle cells. J Thorac Cardiovasc Surg. 1997;113: 10–18.PubMedCrossRefGoogle Scholar
  22. 22).
    Taylor DA, Atkins BZ, Hungspreugs P et al. Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat Med. 1998;4: 929–933.PubMedCrossRefGoogle Scholar
  23. 23).
    Li RK, Jia ZQ, Weisel RD et al. Survival and function of bioengineered cardiac grafts. Circulation. 1999;100: II63-II69.PubMedGoogle Scholar
  24. 24).
    Tomita S, Li RK, Weisel RD et al. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation. 1999;100: 11247–11256.CrossRefGoogle Scholar
  25. 25).
    Hug MG, Soonpaa MH, Koh GY et al. Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intracardiac grafts. J Clin Invest. 1996;98: 216–224.CrossRefGoogle Scholar
  26. 26).
    Orlic D, Kajstura J, Chimenti S et al. Bone marrow cells regenerate infarcted myocardium. Nature. 2001;410: 701–705.PubMedCrossRefGoogle Scholar
  27. 27).
    Menashe P, Hagege AA, Scorsin M et al. Myoblast transplantation for heart failure. Lancet. 2001;357: 279–280.CrossRefGoogle Scholar
  28. 28).
    Tateishi-Yuyama E, Matsubara H, Murohara T et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Luncet. 2002;360: 427–435.CrossRefGoogle Scholar
  29. 29).
    Assmus B, Schachinger V, Teupe C et al. Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation. 2002;106: 3009–3017.PubMedCrossRefGoogle Scholar

Copyright information

© Society and Springer Japan 2003

Authors and Affiliations

  1. 1.Department of Cardiovascular SurgerySaitama Medical CenterSaitamaJapan
  2. 2.The National Research Institute for Child Health and DevelopmentJapan

Personalised recommendations