Journal of General Internal Medicine

, Volume 20, Issue 3, pp 245–250

A risk assessment tool (OsteoRisk) for identifying latin American women with osteoporosis

  • Shuvayu S. Sen
  • Vincent P. Rives
  • Osvaldo D. Messina
  • Jorge Morales-Torres
  • Gregorio Riera
  • Juan M. Angulo-Solimano
  • João F. M. Neto
  • Alberto FrisoliJr.
  • Ricardo C. Sáenz
  • Olga Geling
  • Philip D. Ross
Original Articles

Abstract

OBJECTIVE: To develop a simple and easy-to-use tool for identifying osteoporotic women (femoral neck bone mineral density [BMD] T-scores ≤−2.5) in Latin America.

DESIGN: Retrospective study involving review of medical records.

SETTING: Osteoporosis clinics in 6 Latin American countries.

PATIENTS: Postmenopausal women ages ≥50 in Latin America who had femoral neck BMD measurements.

MEASUREMENTS AND MAIN RESULTS: A risk index was developed from 1.547 patients based on least square regression using age, weight, history of fractures, and other variables as predictors for BMD T-score. The final model was simplified by reducing the number of predictors; sensitivity and specificity were evaluated before and after reducing the number of predictors to assess performance of the index. The final model included age, weight, country, estrogen use, and history of fractures as significant predictors for T-score. The resulting scoring index achieved 91% sensitivity and 47% specificity. Simplifying the index by using only age and weight yielded similar performance (sensitivity, 92%; specificity, 45%). Three risk categories were identified based on OsteoRisk, the index using only age and body weight: high-risk patients (index <=−2; 65.6% were osteoporotic), moderate-risk patients (−2<index <=1; 26.7% were osteoporotic), and low-risk patients (index>1; 8% were osteoporotic). Similar results were seen in a validation sample of 279 women in Brazil.

CONCLUSION: Age and weight alone performed well for predicting the risk of osteoporosis among postmenopausal women. The OsteoRisk is an easy-to-use tool that effectively targets the vast majority of osteoporotic patients in Latin America for evaluation with BMD.

Key words

osteoporosis bone mineral density risk assessment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Freedman KB, Kaplan FS, Bilker WB, Strom BL, Lowe RA. Treatment of osteoporosis: are physicians missing an opportunity? J Bone Joint Surg Am. 2000;82:A:1063–70.PubMedGoogle Scholar
  2. 2.
    Pal B. Questionnaire survey of advice given to patients with fractures. BMJ. 1999;318:500–1.PubMedGoogle Scholar
  3. 3.
    Schnitzer TJ, Wehren LE. The patient with a fragility fracture: an evolving role for the orthopaedic surgeon. O J Med. 2004;97:101–4.Google Scholar
  4. 4.
    Murrillo-Uribe A, Deleze-Hinojosa M, Aguirre E, et al. [Osteoporosis in Mexican postmenopausal women. Magnitude of the problem. Multicenter study.] Cinecol Obstet Mex. 1999;67:227–33.Google Scholar
  5. 5.
    Lams HG. [Situation of osteoporosis in Chile.] Rev Med Chil. 2000;128:809–12.Google Scholar
  6. 6.
    Arrigada M, Arinoviche R, Rodriguez JA. The prevalence of osteopoina and osteoporosis in Chile. Galenus. 1987;9:33–6.Google Scholar
  7. 7.
    Revista Veja. Edicion 1658/Julio 2000, Brazil.Google Scholar
  8. 8.
    Riera G. Realidad de la osteoporosis en Venezula. Rev Informe Medico. 2003;3:354–56.Google Scholar
  9. 9.
    Bacon WE, Maggi S, Looker A, et al. International comparison of hip fracture rates in 1988–89. Osteoporos Int. 1996;6:69–75.PubMedCrossRefGoogle Scholar
  10. 10.
    Castro Da Rocha FA, Ribeiro AR. Low incidence of hip fractures in an equatorial are. Osteoporos Int. 2003;14:496–99.PubMedCrossRefGoogle Scholar
  11. 11.
    Clark P, de la Pena F, Gomez Garcia F, Orozco JA, Tugwell P. Risk factors for osteoporotic hip fractures in Mexicans. Arch Med Res. 1998;29:253–7.PubMedGoogle Scholar
  12. 12.
    Barros ER, Kasamatsu TS, Ramalho AC, Hauache OM, Vieira JG, Lazaretti-Castro M. Bone mineral density in young women of the city of Sao Paulo, Brazil: correlation with both collagen type I alpha 1 gene polymorphism and clinical aspects. Braz J Med Biol Res. 2002;35:885–93.PubMedCrossRefGoogle Scholar
  13. 13.
    Cooper C, Campion G, Melton LJ III. Hip fractures in the elderly: a world-wide projection. Osteoporos Int. 1992;2:285–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Slemenda CW, Hui SL, Longcope C, Wellman H, Johnston CC Jr. Predictors of bone mass in perimenopausal women. Ann Intern Med. 1990;112:96–100.PubMedGoogle Scholar
  15. 15.
    Ribot C, Pouilles JM, Bonneau M, Tremollieres F. Assessment of the risk of post-menopausal osteoporosis using clinical factors. Clin Endocrinol. 1992;36:225–8.Google Scholar
  16. 16.
    Bauer DC, Browner WS, Cauley JA, et al. Factors associated with appendicular bone mass in older women. Ann Intern Med. 1993;118:657–65.PubMedGoogle Scholar
  17. 17.
    Lydick E, Cook K, Turpin J, et al. Development and validation of a simple questionnaire to facilitate identification of women likely to have low bone mass. Am J Manag Care. 1998;4:37–48.PubMedGoogle Scholar
  18. 18.
    Koh LK, Sedrine WB, Torralba TP, et al. Osteoporosis Self-assessment Tool for Asians (OSTA) Research Group. A simple tool to identify Asian women at increased risk of osteoporsis. Osteoporos Int. 2001;12:699–705.PubMedCrossRefGoogle Scholar
  19. 19.
    Fujiwara S, Masunari N, Suzuki G, Ross PD. Performance of osteoporosis risk indices in a Japanese population. Curr Ther Res. 2001;62:586–94.CrossRefGoogle Scholar
  20. 20.
    Geusens P, Hochberg MC, van der Voort DJ, et al. Performance of risk indices for identifying low bone density in postmenopausal women. Mayo Clin Proc. 2002;77:629–37.PubMedGoogle Scholar
  21. 21.
    Cadarette SM, McIsaac WM, Hawker GA, et al. The validity of decision rules for selecting women with primary osteoporosis for bone mineral density testing. Osteoporos Int. 2004;15:361–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Ross PD, Wasnich RD, Davis JW. Fracture prediction models for osteoporosis prevention. Bone. 1990;11:327–31.PubMedCrossRefGoogle Scholar
  23. 23.
    Mautalen C, Pumarino H. Epidemiology of osteoporosis in South America. Osteoporos Int. 1997;7(suppl 3):S73-S77.PubMedGoogle Scholar
  24. 24.
    Sapunar J, Bravo P, Schneider H, Jimenez M. [Is Mapuche ethnicity a risk factor for hip fracture in aged?] Rev Med Chil. 2003;131:1135–41.PubMedGoogle Scholar
  25. 25.
    Garcia-Ramos G, Gellez-Zenteno JF, Zapata-Zuniga M, et al. HLA class II genotypes in Mexican Mestizo patients with myashthenia gravis. Eur J Neurol. 2003;10:707–10.PubMedCrossRefGoogle Scholar
  26. 26.
    Ramalho AC, Lazaretti-Castro M, Hauache O, et al. Osteoporotic fractures of proximal femur: clinical and epidemiological features in a population of the city of Sao Paulo. Sao Paulo Med J. 2001;119:48–53.PubMedCrossRefGoogle Scholar
  27. 27.
    Carranza-Lira S, Rosas M, Murillo A, Martinez N, Santos J. Osteoporosis in postmenopausal women (Mexico City): 1. Risk factors. Int J Fertil Womens Med. 2002;47:22–5.PubMedGoogle Scholar
  28. 28.
    Martorell R, Khan LK, Hughes ML, Grummer-Strawn LM. Obesity in Latin American women and children. J Nutr. 1998;128:1464–73.PubMedGoogle Scholar
  29. 29.
    WHO Study Group. Assessment of fracture risk and its application to screening for post menopausal osteoporosis. WHO technical report series 843. Geneva, Switzerland: WHO; 1994.Google Scholar
  30. 30.
    Mallows C. Some comments on Cp. Technometrics. 1973;661–76.Google Scholar
  31. 31.
    Rawlings JO. Applied Regression Analysis. Pacific Grove, CA: Wadsworth & Brooks/Cole; 1988.Google Scholar
  32. 32.
    Reid IR. Relationships among body mass, its components, and bone. Bone. 2002;31:547–55.PubMedCrossRefGoogle Scholar
  33. 33.
    Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1992;143:29–36.Google Scholar
  34. 34.
    Carranza-Lira S, Rosas M, Murillo A, Martinez N, Santos J. Osteoporosis in postmenopausal women (Mexico City): 2. Validation of a predictive clinical index. Int J Fertil Womens Med. 2002;47:26–31.PubMedGoogle Scholar
  35. 35.
    Richy F, Gourlay M, Ross PD, et al. Validation and comparative evaluation of the osteoporosis self-assessment tool (OST) in a Caucasian population from Belgium. QJM. 2004;97:39–46.PubMedCrossRefGoogle Scholar
  36. 36.
    Hawker GA, Jamal SA, Ridout R, Chase C. A clinical prediction rule to identify premenopausal women with low bone mass. Osteoporos Int. 2002;13:400–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Sen SS, Geling O, Messina OD, et al. Comparison of body weight and body mass index as predictors for osteoporosis among postmenopausal Latin American women. Osteoporos Int. 2002;(suppl 3):S27.Google Scholar
  38. 38.
    Goemaere S, Segels B, Toye K, et al. Limited clinical utility of a self-evaluating risk assessment scale for postmenopausal osteoporosis: lack of predictive value of lifestyle-related factors. Calcif Tissue Int. 1999;65:354–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Bohannon AD, Hanlon JT, Landerman R, Gold DT. Association of race and other potential risk factors with nonvertebral fractures in community-dwelling elderly women. Am J Epidemiol. 1999;149:1002–9.PubMedGoogle Scholar
  40. 40.
    Kung AW, Ho AY, Sedrine WB, Reginster JY, Ross PD. Comparison of a simple clinical risk index and quantitative bone ultrasound for identifying women at increased risk of osteoporosis. Osteoporos Int. 2003;14:716–21.PubMedCrossRefGoogle Scholar
  41. 41.
    Cadarette SM, Jaglal SB, Kreiger N, McIsaac WJ, Darlington GA, Tu JV. Development and validation of the Osteoporosis Risk Assessment Instrument to facillitate selection of women for bone densitometry. CMAJ. 2000;162:1289–94.PubMedGoogle Scholar
  42. 42.
    Sedrine WB, Chevallier T, Zegels B, et al. Development and assessment of the Osteoporosis Index of Risk (OSIRIS) to facilitate selection of women for bone densitometry. Gynecol Endocrinol. 2002;16:245–50.PubMedCrossRefGoogle Scholar

Copyright information

© Society of General Internal Medicine 2005

Authors and Affiliations

  • Shuvayu S. Sen
    • 1
  • Vincent P. Rives
    • 2
  • Osvaldo D. Messina
    • 3
  • Jorge Morales-Torres
    • 4
  • Gregorio Riera
    • 5
  • Juan M. Angulo-Solimano
    • 6
  • João F. M. Neto
    • 7
  • Alberto FrisoliJr.
    • 8
  • Ricardo C. Sáenz
    • 9
  • Olga Geling
    • 10
  • Philip D. Ross
    • 11
  1. 1.Merck & Company, Inc.Whitehouse Station
  2. 2.Temple University School of PharmacyPhiladelphiaUSA
  3. 3.Department of RheumatologyC. Argerich HospitalBuenos AiresArgentina
  4. 4.Facultad de Medicina de LeonHospital Aranda de la ParraLeón, GTOMexico
  5. 5.Department of MedicineUniversidad de CaraboboValenciaVenezuela
  6. 6.Hospital Central de la Fuerza AéreaLimaPeru
  7. 7.Department of RheumatologyState University (Unicamp)Campinas, SPBrazil
  8. 8.Department of Internal MedicineUniversida de Federal de Sao PauloSao PauloBrazil
  9. 9.Department of Medicine, Division of RheumatologyHospital Dr. R.A. Calderón GuardiaSan JoséCosta Rica
  10. 10.Rutgers UniversityPiscatawayUSA
  11. 11.Merck Research LaboratoiresRahwayUSA

Personalised recommendations