Fisheries Science

, Volume 74, Issue 4, pp 804–812 | Cite as

Population structure of purple sea urchin Strongylocentrotus purpuratus along the Baja California peninsula

  • Nadia C Olivares-Bañuelos
  • Luís M Enríquez-Paredes
  • Lydia B Ladah
  • Jorge De La Rosa-Vélez


Purple sea urchin Strongylocentrotus purpuratus is fished from British Columbia, Canada to Punta Baja, Mexico. The North American population has been divided into northern and southern fishery stocks at the break of Point Conception, but little is known about its southernmost distribution along the Mexican Pacific coast of the Baja California peninsula. In this study purple sea urchin populations in six sites along the Baja California peninsula were analyzed using mitochondrial deoxyribonucleic acid restriction fragment length polymorphism (mtDNA RFLP). A homogeneous distribution of three common haplotypes among all sites was observed. A significant F ST value, however, indicated genetic structure mainly due to the haplotype array in San Miguel, Isla Todos Santos and Punta Baja sites, which were characterized by having high haplotype diversity and several unique haplotypes. Homogeneous distribution of haplotypes along the peninsula could have been influenced by the unidirectional California Current system, flowing north to south. Unique haplotypes in Punta Baja and the structure found could be the result of local oceanographic features specific to this major upwelling zone. It may be necessary to consider the Punta Baja populations individually when managing the purple sea urchin fishery in Baja California, as they show signs of being a unique stock.

Key Words

Baja California COl mtDNA population structure purple sea urchin RFLP Strongylocentrotus purpuratus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sagarin RD, Gaines SD. Geographical abundance distributions of coastal invertebrates: using one-dimensional ranges to test biogeographic hypotheses. J. Biogeogr. 2002; 29: 985–998.CrossRefGoogle Scholar
  2. 2.
    Ricketts EF, Calvin J. Between Pacific Tides. 3rd Rev. edn. 1962 by J.W. Hedgpeth. XII 516. Stanford University Press, Stanford, CA. 1939.Google Scholar
  3. 3.
    Workman G. A Review of the Biology and Fisheries for Purple Sea Urchin (Strongylocentrotus purpuratus, Stimpson, 1957) and Discussion of the Assessment Needs of a Proposed Fishery. Canadian stock assessment secretariat research document 99/163, Fisheries and Oceans Canada. Ottawa 1999.Google Scholar
  4. 4.
    Pérez SM, Calderón-Aguilera LE. Analysis of the biological fishing purple hedgehog Strongylocentrotus purpuratus, a new fishery in Baja California. Oceanologia 1996; 2: 7–16.Google Scholar
  5. 5.
    Botsford LW, Morgan LE, Lockwood DR, Wilen JE. Marine reserves and management of the northern California red sea urchin fishery. Reports of California Cooperative Oceanic Fisheries Investigations (CalCOFI Report) 1999; 40: 87–93.Google Scholar
  6. 6.
    Strathmann RR. Length of pelagic period in echinoderms with feeding larvae from the Northeast Pacific. J. Exp. Mar. Biol. Ecol. 1978; 34: 23–27.CrossRefGoogle Scholar
  7. 7.
    Shanks AL. Surface slicks associated with tidally forced internal waves may transport pelagic larvae of benthic invertebrates and fishes shoreward. Mar. Ecol. Prog. Ser. 1983; 13: 311–315.CrossRefGoogle Scholar
  8. 8.
    Shanks AL. Mechanisms of cross-shelf dispersal of larval invertebrates and fish. In: McEdward L (ed.). Ecology of Marine Invertebrate Larvae. CRC Press, Boca Raton, FL. 1995; 323–367.Google Scholar
  9. 9.
    Pineda J. Predictable upwelling and the shoreward transport of planktonic larvae by internal tidal bores. Science 1991; 253: 548–551.PubMedCrossRefGoogle Scholar
  10. 10.
    Pineda J. Circulation and larval distribution in internal tidal bore warm fronts. Limnol. Oceanogr. 1999; 44: 1400–1414.Google Scholar
  11. 11.
    Shanks AL, Largier JL, Brink L, Brubaker J, Hoof R. Demonstration of the onshore transport of larval invertebrates by the shoreward movement of an upwelling front. Limnol. Oceanogr. 2000; 45: 230–236.Google Scholar
  12. 12.
    Farrel TM, Bracher D, Roughgarden J. Cross-shelf transport causes recruitment to intertidal populations in central California. Limnol. Oceanogr. 1991; 36: 279–288.CrossRefGoogle Scholar
  13. 13.
    Hawkins SJ, Hartnoll RG. Settlement patterns of Semibalanus balanoides (L.) in the Isle of Man (1977–1981). J. Exp Mar. Biol. Ecol. 1982; 62: 271–283.CrossRefGoogle Scholar
  14. 14.
    Shanks AL. The onshore transport of an oil spill by internal waves. Science 1987; 235: 1198–1200.PubMedCrossRefGoogle Scholar
  15. 15.
    Pineda J. Internal tidal bores in the nearshore: warm-water fronts, seaward gravity currents and the onshore transport of neustonic larvae. J. Mar. Res. 1994a 52: 427–458.CrossRefGoogle Scholar
  16. 16.
    Mace AJ, Morgan SG. Larval accumulation in the lee of a small headland: implications for the design of marine reserves. Mar. Ecol. Prog. Ser. 2006; 18: 19–29.CrossRefGoogle Scholar
  17. 17.
    Lamare MD. Origin and transport of larvae of the sea urchin Evechinus chloroticus (Echinodermata: Echinoidea) in a New Zealand fiord. Mar. Ecol. Prog. Ser. 1998; 174: 107–121.CrossRefGoogle Scholar
  18. 18.
    Shanks AL, Eckert GL. Population persistence of California Current fishes and benthic crustaceans: a marine drift paradox. Ecol. Monogr. 2005; 75: 505–524.CrossRefGoogle Scholar
  19. 19.
    Palumbi SR. Population genetics, demographic connectivity, and the design of marine reserves. Ecol. Appl. 2003; 13 (Suppl.): S146-S158.CrossRefGoogle Scholar
  20. 20.
    Miller BA, Emlet RB. Influence of nearshore hydrodynamics on larval abundance and settlement of sea urchins Strongylocentrotus franciscanus and S. purpuratus in the Oregon upwelling zone. Mar. Ecol. Prog. Ser. 1997; 148: 83–94.CrossRefGoogle Scholar
  21. 21.
    Wing SR, Largier JL, Botsford LW, Quinn JF. Settlement and transport of benthic invertebrates in an intermittent upwelling region. Limnol. Oceanogr. 1995; 40: 316–329.Google Scholar
  22. 22.
    Burton RS. Protein polymorphisms and genetic differentiation of marine invertebrate populations. Mar. Biol. 1983; 4: 193–206.Google Scholar
  23. 23.
    Palumbi SR, Wilson AC. Mitochondrial DNA diversity in the sea urchins Strongylocentrotus purpuratus and S. droebachiensis. Evolution 1990; 44: 403–415.CrossRefGoogle Scholar
  24. 24.
    Edmands S, Moberg PE, Burton RS. Allozyme and mitochondrial DNA evidence of population subdivision in the purple sea urchin Strongylocentrotus purpuratus. Mar. Biol. 1996; 126: 443–450.CrossRefGoogle Scholar
  25. 25.
    Flowers JM, Schroeter SC, Burton RS. The recruitment sweepstakes has many winners: genetic evidence from the sea urchin Strongylocentrotus purpuratus. Evolution 2002; 56: 1445–1453.PubMedGoogle Scholar
  26. 26.
    Hickey BM. The California Current System: hypotheses and facts. Prog. Oceanogr. 1979; 8: 191–279.CrossRefGoogle Scholar
  27. 27.
    Haury L, Venrick E, Fey C, McGowan J, Niiler P. The Ensenada front: July 1985. Calif. Coop. Ocean. Fish. Investig. Rep. 1983; 34: 69–88.Google Scholar
  28. 28.
    Ladah LB. The shoaling of nutrient-enriched subsurface waters as a mechanism to sustain primary productivity off Central Baja California during El Niño winters. J. Mar. Sys. 2003; 42: 145–152.CrossRefGoogle Scholar
  29. 29.
    Wooster WS, Jones JH. The California undercurrent off northern Baja California. J. Mar. Res. 1970; 28: 235–250.Google Scholar
  30. 30.
    Ladah LB, Tapia F, Pineda J, Lopez M. Spatially heterogeneous, synchronous settlement of Chthamalus spp. larvae in northern Baja California. Mar. Ecol. Prog. Ser. 2005; 302; 177–185.CrossRefGoogle Scholar
  31. 31.
    Chelton D, Bernal P, McGowan J. Large-scale interannual physical and biological interaction in the California current. J. Mar. Res. 1982; 4: 1095–1125.Google Scholar
  32. 32.
    Durazo R, Baumgartner TR. Evolution of oceanographic conditions off Baja California. Prog. Oceanogr. 2002; 54: 7–31.CrossRefGoogle Scholar
  33. 33.
    Lavaniegos BE, Jiménez-Pérez LC, Gaxiola-Castro G. Plankton response to El Niño 1997–1998 and La Niña 1999 in the Southern region of the California Current. Prog. Oceanogr. 2002; 54: 33–58.CrossRefGoogle Scholar
  34. 34.
    Ladah LB, Zertcuhe-Gonzalez JA. Giant kelp (Macrocystis pyrifera) survival in deep water (25–40 m) during El Niño of 1997–1998 in Baja California, Mexico. Bot. Mar. 2004; 47: 367–372.CrossRefGoogle Scholar
  35. 35.
    Amador-Buenrostro A, Argote-Espinoza ML, Mancilla-Peraza M, Figueroa-Rodríguez M. Short term variations of the anticyclonic circulation in Bahía Sebastián Vizcaíno, B.C. Cien. Mar. 1995; 21: 201–223.Google Scholar
  36. 36.
    Botsford LW. Physical influences on recruitment to California Current invertebrate populations on multiple scales. ICES J. Ma Sci. 58 2001; 58: 1081–1091.CrossRefGoogle Scholar
  37. 37.
    Andrew NL, Agatsuma Y, Ballesteros E, Bazhin AG, Creaser EP, Barnes DKA, Botsford LW, Bradbury A, Campbell A, Dixon JD, Einarsson S, Gerring PK, Hebert K, Hunter M, Hur SB, Johnson-Craig R, Juinio-Menez MA, Kalvass P, Miller RJ, Moreno CA, Palleiro JS, Rivas D, Robinson SML, Schroeter SC, Steneck RS, Vadas RL, Woodby DA, Xiaoqi Z. Status and management of world sea urchin fisheries. Oceanogr. Mar. Biol. Annu. Rev. 2002; 40: 343–425.Google Scholar
  38. 38.
    Park LK, Moran P. Development in molecular genetics techniques in fisheries. Rev. Fish. Biol. Fisher. 1994; 4: 272–299.CrossRefGoogle Scholar
  39. 39.
    Thorrold SR, Jones GF, Hellberg ME, Burton RS, Swearer SE, Niegel JE, Morgan SG, Warner RR. Quantifying larval retention and connectivity in marine populations with artificial and natural markers. Bull. Mar. Sci. 2002; 70: 291–308.Google Scholar
  40. 40.
    Underwood AJ. Experiments in Ecology: Their Logical Design and Interpretation Using Analysis of Variance. Cambridge University Press, New York, NY. 1997.Google Scholar
  41. 41.
    Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. 1989.Google Scholar
  42. 42.
    Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988; 16: 1215.PubMedCrossRefGoogle Scholar
  43. 43.
    Jacobs HT, Elliott DJ, Math VB, Farquharson A. Nucleotide sequence and gene organization of sea urchin mitochondrial DNA. J. Mol. Biol. 1988; 202: 185–217.PubMedCrossRefGoogle Scholar
  44. 44.
    Excoffier L, Smouse PE, Quattro JM. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 1992; 131: 479–491.PubMedGoogle Scholar
  45. 45.
    Felsenstein J. PHYLIP — phylogeny inference package (version 3.2). Cladistics 1989; 5: 164–166.Google Scholar
  46. 46.
    Kyle CJ, Boulding EG. Comparative population genetic structure of marine gastropods (Littorina spp.) with and without pelagic larval dispersal. Mar. Biol. 2000; 137: 835–845.CrossRefGoogle Scholar
  47. 47.
    Avise JC. Phylogeography, the History and Formation of Species. Harvard University Press, Cambridge, MA. 2000.Google Scholar
  48. 48.
    Venrick E, Brograd SJ, Checkley D, Durazo R, Gaxiola-Castro G, Hunter J, Huyer A, Hyrenbach KD, Lavaniegos BE, Mantyla A, Schwing FB, Smith RL, Sydeman WJ, Wheeler PA. The state of the California Current, 2002–2003: tropical and subarctic influences vie for dominance. Calif. Coop. Ocean. Fish. Invest. Rep. 2003; 44: 28–60.Google Scholar
  49. 49.
    Graham WM, Largier JL. Upwelling shadows as nearshore retention sites: the example of northern Monterey Bay. Cont Shelf Res. 1997; 17: 509–532.CrossRefGoogle Scholar
  50. 50.
    Ganz HH, Burton RS. Genetic differentiation and reproductive incompatibility among Baja California populations of the copepod Tigriopus californicus. Mar. Biol. 1995; 123: 821–827.CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Fisheries Science 2008

Authors and Affiliations

  • Nadia C Olivares-Bañuelos
    • 1
  • Luís M Enríquez-Paredes
    • 2
  • Lydia B Ladah
    • 1
  • Jorge De La Rosa-Vélez
    • 2
  1. 1.Department of Biological OceanographyCICESEEnsenadaMéxico
  2. 2.Laboratorio de Ecología Molecular, Facultad de Ciencias MarinasUniversidad Autónoma de Baja CaliforniaEnsenadaMéxico

Personalised recommendations