Fisheries Science

, Volume 74, Issue 4, pp 787–795 | Cite as

Horizontal and vertical movement of Mekong giant catfish Pangasianodon gigas measured using acoustic telemetry in Mae Peum Reservoir, Thailand

  • Hiromichi Mitamura
  • Yasushi Mitsunaga
  • Nobuaki Arai
  • Yukiko Yamagishi
  • Metha Khachaphichat
  • Thavee Viputhanumas


The horizontal and vertical movements of eight immature hatchery-reared Mekong giant catfish Pangasianodon gigas were monitored using acoustic telemetry in Mae Peum Reservoir, Thailand between 2003 and 2004. The fish were monitored for between eight days and more than 9 months. All of the fish moved over the entire reservoir within approximately 40 days after release. Subsequently, the home range became small approximately 40 days after release. The fish preferred deep areas in the reservoir. The fish displayed diel horizontal and vertical movement patterns. The fish showed larger-scale horizontal movement during the daytime than at night. The fish repeatedly showed active vertical movement during the day, whilst there was little variation in swimming depth at night. Our results imply that the vertical movements of the fish were related to the environmental condition of the reservoir.

Key words

diel movement dissolved oxygen endangered species habitat range stock enhancement water temperature 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rainboth WJ. Fishes of the Cambodian Mekong. FAO, Rome. 1996.Google Scholar
  2. 2.
    Mattson NS, Buakhamvongsa K, Sukumasavin N, Tuan N, Vibol O. Cambodia Mekong Giant Fish Species: On Their Management and Biology. MRC Technical Paper. No. 3. Mekong River Commission, Phnom Penh. 2002.Google Scholar
  3. 3.
    Akagi O, Akimichi T, Fumihito A, Takai Y. An ethonoichthyological study of Pla buk (Pangasianodon gigas) at Chiangkhong, Northern Thailand. Bull. Nat. Muse. Ethno. 1996; 21: 293–344.Google Scholar
  4. 4.
    Hogan ZS. Threatened fishes of the world: Pangasianodon gigas Chevey, 1931 (Pangasiidae). Environ. Biol. Fish. 2004; 92: 210.CrossRefGoogle Scholar
  5. 5.
    Hogan ZS, Moyle PB, May B, Vander Zanden MJ, Baird IG. The imperiled giants of the Mekong. Am. Sci. 2004; 92: 228–237.Google Scholar
  6. 6.
    MGCWG (Mekong Giant Catfish Working Group). Development of a Species Conservation Action Plan for the Mekong Giant Catfish. December 2005 Workshop report. MGCWG, Phnom Penh. 2005.Google Scholar
  7. 7.
    Pawaputanon O. An Introduction to the Mekong Fisheries of Thailand. Mekong Development Series No. 5. Mekong River Commission, Vientiane. 2007.Google Scholar
  8. 8.
    Meynell PJ. Scoping Study for Biodiversity Assessment of the Mekong River in Northern Laos and Thailand. TUCN Mekong water and nature initiative and Mekong wetlands biodiversity conservation and sustainable use programme, IUCN, Bangkok. 2003.Google Scholar
  9. 9.
    Bhukaswan T. Management of Asian reservoir fisheries. FAO Fish. Tech. Paper 1980.Google Scholar
  10. 10.
    MRC (Mekong River Commission). Fisheries Annual Report 2005. MRC, Vientiane. 2005.Google Scholar
  11. 11.
    Humston R, Ault JS, Larkin MF, Luo J. Movements and site fidelity of the bonefish Albula vulpes in the Northern Florida Keys determined by acoustic telemetry. Mar. Ecol. Prog. Ser. 2005; 291: 237–248.CrossRefGoogle Scholar
  12. 12.
    Topping DT, Lowe CG, Caselle JE. Site fidelity and seasonal movement patterns of adult California sheephead Semicossyphus pulcher (Labridae): an acoustic monitoring study. Mar. Ecol. Prog. Ser. 2006; 326: 257–267.CrossRefGoogle Scholar
  13. 13.
    Bao TQ, Buakhamvongsa K, Chan S, Chhuon KC, Phommavong T, Poulsen AF, Rukawoma P, Suornratana U, Tien DV, Tuan TT, Tung NT, Valbo-Jorgensen J, Viravong S, Yoorong N. Local knowledge in the study of river fish biology: experiences from the Mekong. Mekong Develop. Ser. 2001; 1: 1–22.Google Scholar
  14. 14.
    Arai N, Mitamura H, Mitsunaga Y, Viputhanumas T. Mekong giant catfish tracking project (MCTP): preliminary results in 2002. In: Spedicato MT, Lembo G, Marmulla G (eds) Aquatic Telemetry; Advances and Applications FAO/ Coispa, Rome. 2005; 125–131.Google Scholar
  15. 15.
    Hogan ZS, Samy EM, Phanara TACH, Hortle KG. Tagging Fish — A Case Study from the Tonle Sap, Cambodia. MRC Technical Paper. No. 12. Mekong River Commission, Vientiane. 2006.Google Scholar
  16. 16.
    Mitamura H, Mitsunaga Y, Arai N, Yamagishi Y, Khachaphichat M, Viputhanumas T. Vertical movements of a Mekong giant catfish Pangasianodon gigas in Mae peum reservoir, northern Thailand, monitored by multi-sensor micro data logger. Zool. Sci. 2007; 24: 643–647.PubMedCrossRefGoogle Scholar
  17. 17.
    Poulsen AF, Valbo-Jorgensen J. Deep pools in the Mekong River. Mekong Fish. Catch Cult 2001; 7: 1–3.Google Scholar
  18. 18.
    Poulsen AF, Poeu O, Viravong S, Suntornratana U, Tung NT. Fish Migration of the Lower Mekong River Basin: Implication for Development, Planning and Environment Management. MRC Technical Paper No. 8. Mekong River Commission. Vientiane. 2002; 1–62.Google Scholar
  19. 19.
    Mitamura H, Mitsunaga Y, Arai N, Viputhanumas T. Comparison of two methods of attaching telemetry transmitters to the Mekong giant catfish, Pangasianodon gigas. Zool. Sci. 2006; 23: 235–238.PubMedCrossRefGoogle Scholar
  20. 20.
    Lucas MC. Effects of implanted dummy transmitters on mortality, growth and tissue reaction in rainbow trout, Salmo gairdneri. Richardson. J. Fish. Biol. 1989; 35: 577–587.CrossRefGoogle Scholar
  21. 21.
    Moore A, Russell IC, Potter ECE. The effects of intraperitoneally implanted dummy acoustic transmitters on the behaviour and physiology of juvenile Atlantic salmon, Salmo salar L.. J. Fish. Biol. 1990; 37: 713–721.CrossRefGoogle Scholar
  22. 22.
    Mitamura H, Mitsunaga Y, Arai N, Viputhanumas T. Movements of immature hatchery-reared Mekong giant catfish Pangasianodon gigas released in the Mekong River, measured using acoustic telemetry. Fish. Sci. 2008; 74 (in press).Google Scholar
  23. 23.
    Mitsunaga Y, Kawai S, Komeyama K, Matsuda M, Yamane T. Habitat utilization of largemouth bass around a set net. Fish. Engineer. 2005; 41: 251–255.Google Scholar
  24. 24.
    Carol J, Zamora L, Garcia-Berthou E. Preliminary telemetry data on the movement patterns and habitat use of European catfish (Silurus glanis) in a reservoir of the River Ebro, Spain. Ecol. Fresh. Fish. 2007; 16: 450–456.CrossRefGoogle Scholar
  25. 25.
    Mitamura H, Mitsunaga Y, Arai N, Yokota T, Takeuchi H, Tsuzaki T, Itani M. Directed movements and diel burrow fidelity patterns of red tilefish Branchiostegus japonicus determined using ultrasonic telemetry. Fish. Sci. 2005; 71: 491–498.CrossRefGoogle Scholar
  26. 26.
    Jorgensen SJ, Kaplan DM, Klimley AP, Morgan SG, O’Farrell MR, Botsford LW. Limited movement in blue rockfish Sebastes mystinus: internal structure of home range. Mar. Ecol. Prog. Ser. 2006; 327: 157–170.CrossRefGoogle Scholar
  27. 27.
    Brill RW. A review of temperature and oxygen tolerance studies of tunas pertinent to fisheries oceanography, movement models and stock assessments. Fish. Ocean. 1994; 3: 204–216.CrossRefGoogle Scholar
  28. 28.
    Cartamil DP, Lowe CG. Diel movement patterns of ocean sunfish Mola mola off southern California. Mar. Ecol. Prog. Ser. 2004; 266: 245–253.CrossRefGoogle Scholar
  29. 29.
    Rahel FJ, Nutzman JW. Foraging in a lethal environment: fish predation in hypoxic waters of a stratified lake. Ecology 1994; 75: 1246–1253.CrossRefGoogle Scholar
  30. 30.
    Musyl MK, Brill RW, Boggs CH, Curran DS, Kazama TK, Seki MP. Vertical movements of bigeye tuna Thunnus obesus associated with island, buoys, and seamounts near the main Hawaiian Island from archival tagging data. Fish. Ocean. 2003; 12: 152–169.CrossRefGoogle Scholar
  31. 31.
    Davis JC. Minimal dissolved oxygen requirements of aquatic life with emphasis on Canadian species: a review. J. Fish. Res. Bd. Can. 1975; 32: 2295–2332.Google Scholar
  32. 32.
    Kramer DL. Dissolved oxygen and fish behavior. Environ. Biol. Fish. 1987; 18: 81–92.CrossRefGoogle Scholar
  33. 33.
    Meyer CG, Holland KN, Wetherbee BM, Lowe CG. Movement patterns, habitat utilization, home range size and site fidelity of whitesaddle goatfish, Parupeneus porphyreus, in a marine reserve. Environ. Biol. Fish. 2000; 59: 235–242.CrossRefGoogle Scholar
  34. 34.
    Lowe CG, Topping DT, Cartamil DP, Papastamatiou YP. Movement patterns, home range, and habitat utilization of adult kelp bass Paralabrax clathratus in a temperate no-take marine reserve. Mar. Ecol. Prog. Ser. 2003; 256: 205–216.CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Fisheries Science 2008

Authors and Affiliations

  • Hiromichi Mitamura
    • 1
  • Yasushi Mitsunaga
    • 2
  • Nobuaki Arai
    • 1
  • Yukiko Yamagishi
    • 1
  • Metha Khachaphichat
    • 3
  • Thavee Viputhanumas
    • 4
  1. 1.Graduate School of InformaticsKyoto UniversityKyotoJapan
  2. 2.Faculty of AgricultureKinki UniversityNaraJapan
  3. 3.Phayao Inland Fisheries Research and Development CenterPhayaoThailand
  4. 4.Inland Fisheries Research and Development BureauKasetsart University CampusBangkokThailand

Personalised recommendations