Fisheries Science

, Volume 74, Issue 3, pp 494–502 | Cite as

An assessment of genetic diversity in wild and captive populations of endangered Japanese bitterling Tanakia tanago (Cyprinidae) using amplified fragment length polymorphism (AFLP) markers

  • Hitoshi Kubota
  • Katsutoshi Watanabe
  • Yoko Kakehi
  • Seiichi Watanabe
Article

Abstract

The Japanese bitterling Tanakia tanago (Cyprinidae) is on the verge of extinction in the wild, placing great importance on captive breeding programs for current conservation of the species. However, the loss of genetic diversity during captive breeding is an ongoing matter of concern. Since some captive populations have been almost monomorphic in mitochondrial DNA (mtDNA), this hampers assessments of their genetic diversity during captive breeding. To more accurately assess their genetic diversity, one wild and three captive populations were examined using amplified fragment length polymorphism (AFLP) markers. Estimates of average heterozygosity and nucleotide diversity ranged 0.0479–0.1920 and 0.0023–0.0088, respectively, enabling comparison of genetic diversity among the wild and captive populations, and among year-classes of captive populations. Significant differences in numbers of amplified fragments and proportions of polymorphic fragments were observed among year-classes of all populations. The indices of genetic diversity calculated from AFLP seemed to be, however, less sensitive to weak bottlenecks. No continuous decrease in genetic diversity in nuclear DNA was detected in presently captive populations. This supports the possibility of re-introduction of the captive populations into the original habitats, although survival and reproductive ability in the wild must be taken into consideration.

Key Words

AFLP captive breeding ex-situ conservation genetic diversity Tanakia tanago 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wilson AC, Price SMR. Reintroduction as a reason for captive breeding. In: Olney PJS, Mace GM, Feistner ATC (eds). Creative Conservation: Interactive Management of Wild and Captive Animals. Chapman & Hall, London. 1994; 243–264.Google Scholar
  2. 2.
    Philippart JC. Is captive breeding an effective solution for the preservation of endemic species? Biol. Conserv. 1995; 72: 281–295.CrossRefGoogle Scholar
  3. 3.
    Frankham R, Ballou JD, Briscoe DA. Introduction to Conservation Genetics. Cambridge University Press, Cambridge. 2002.Google Scholar
  4. 4.
    Andrews C, Kaufman L. Captive breeding programmes and their role in fish conservation. In: Olney PJS, Mace GM, Feistner ATC (eds). Creative Conservation: Interactive Management of Wild and Captive Animals. Chapman & Hall, London. 1994; 338–351.Google Scholar
  5. 5.
    Maehata M. Circumstances and problems in preservation at aquarium. In: Nagata Y, Hosoya K (eds). Circumstances in Endangered Japanese Freshwater Fishes and Their Protection. Midori-shobo, Tokyo, 1997; 205–217.Google Scholar
  6. 6.
    Hedrick PW, Brussard PF, Allendorf FW, Beardmore JA, Orzack S. Protein variation, fitness, and captive propagation. Zoo Biol. 1986; 5: 91–99.CrossRefGoogle Scholar
  7. 7.
    Fiumera AC, Parker PG, Fuerst PA. Effective population size and maintenance of genetic diversity in captive-bred populations of a Lake Victoria cichlid. Conserv. Biol. 2000; 14: 886–892.CrossRefGoogle Scholar
  8. 8.
    IUCN/SSC Re-introduction Specialist Group. Guidelines for Re-introductions. IUCN, Gland and Cambridge. 1998.Google Scholar
  9. 9.
    Nakamura M. Cyprinid Fishes of Japan. Research Institute of Natural Resources, Tokyo, 1969.Google Scholar
  10. 10.
    Nakamura T. Actual state of miyako tanago Tanakia tanago. Bull. Tochigi Pref. Fish. Exp. Stn. 1994; 38: 12–18.Google Scholar
  11. 11.
    Arai R. Tanakia tanago. In: Ministry of Environment (ed.). Threatened Wildlife of Japan — Red Data Book, 2nd edn. Japan Wildlife Research Center, Tokyo. 2003; 40–41.Google Scholar
  12. 12.
    Ministry of the Environment. National Strategy of Japan on Biological Diversity. Government of Japan, Tokyo. 1995.Google Scholar
  13. 13.
    Hosoya K. Protection of freshwater fishes in terms of biodiversity. In: Nagata Y, Hosoya K (eds). Circumstances in Endangered Japanese Freshwater Fishes and Their Protection. Midori-shobo, Tokyo. 1997; 315–329.Google Scholar
  14. 14.
    Kubota H, Watanabe K. Genetic diversity in wild and reared populations of the Japanese bitterling Tanakia tanago (Cyprinidae). Ichthyol. Res. 2003; 50: 123–128.CrossRefGoogle Scholar
  15. 15.
    Gottelli D, Sillero-Zubiri C, Applebaum GD, Roy MS, Girman DJ, Garcia-Moreno J, Ostrander EA, Wayne RK. Molecular genetics of the most endangered canid: the Ethiopian wolf Canis simensis. Mol. Ecol. 1994; 3: 301–312.PubMedCrossRefGoogle Scholar
  16. 16.
    O’Brien SJ. Genetic and phylogenetic analyses of endangered species. Annu. Rev. Genet. 1994; 28: 467–489.PubMedCrossRefGoogle Scholar
  17. 17.
    Taylor AC, Sherwin WB, Wayne RK. Genetic variation of microsatellite loci in a bottlenecked species: the northern hairy-nosed wombat Lasiorhinus krefftii. Mol. Ecol. 1994; 3: 277–290.PubMedCrossRefGoogle Scholar
  18. 18.
    Frankham R. Relationship of genetic variation to population size in wildlife. Conserv. Biol. 1996; 10: 1500–1508.CrossRefGoogle Scholar
  19. 19.
    Nei M. Molecular Evolutionary Genetics. Columbia University Press, New York. 1987.Google Scholar
  20. 20.
    Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijter A, Pot J, Peleman J, Kuiper M, Zabeau M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 1995; 23: 4407–4414.PubMedCrossRefGoogle Scholar
  21. 21.
    Liu Z, Nichols A, Li P, Dunham RA. Inheritance and usefulness of AFLP markers in channel catfish (Ictalurus punctatus), blue catfish (I. furcatus), and their F1, F2, and backcross hybrids. Mol. Gen. Genet. 1998; 258: 260–268.PubMedCrossRefGoogle Scholar
  22. 22.
    Kakehi Y, Nakayama K, Watanabe K, Nishida M. Inheritance of amplified fragment length polymorphism markers and their utility in population genetic analysis of Plecoglossus altivelis. J. Fish Biol. 2005; 66: 1529–1544.CrossRefGoogle Scholar
  23. 23.
    Lynch M, Milligan BG. Analysis of population genetic structure with RAPD markers. Mol. Ecol. 1994; 3: 91–99.PubMedCrossRefGoogle Scholar
  24. 24.
    Zhivotovsky LA. Estimating population structure in diploids with multilocus dominant DNA markers. Mol. Ecol. 1999; 8: 907–913.PubMedCrossRefGoogle Scholar
  25. 25.
    Borowsky RL. Estimating nucleotide diversity from random amplified polymorphic DNA and amplified fragment length polymorphism data. Mol. Phylogenet. Evol. 2001; 18: 143–148.PubMedCrossRefGoogle Scholar
  26. 26.
    Borowsky RL, Vidthayanon C. Nucleotide diversity in populations of balitorid cave fishes from Thailand. Mol. Ecol. 2001; 10: 2799–2805.PubMedGoogle Scholar
  27. 27.
    Vekemans X. AFLP-SURV version 1.0. Laboratoire de Génétique et Ecologie Végétale, Université Libre de Bruxelles, Brussels. 2002.Google Scholar
  28. 28.
    Kawamura K, Nagata Y, Ohtaka H, Kanoh Y, Kitamura J. Genetic diversity in the Japanese rosy bitterling, Rhodeus ocellatus kurumeus (Cyprinidae). Ichthyol. Res. 2001; 48: 369–378.CrossRefGoogle Scholar
  29. 29.
    Ohnaka T, Sasaki H, Nagai K, Numachi K. Marked monomorphism at the d-loop region of mtDNA in an endangered species Pseudorasbora pumira subsp. sensu Nakamura. Nippon Suisan Gakkaishi 1999; 65: 1005–1009.Google Scholar
  30. 30.
    Ikeda M, Taniguchi N. Genetic variation and divergence in populations of ayu Plecoglossus altivelis, including endangered subspecies, inferred from PCR-RFLP analysis of the mitochondrial DNA d-loop region. Fish. Sci. 2002; 68: 18–26.CrossRefGoogle Scholar
  31. 31.
    Watanabe K, Nishida M. Genetic population structure of Japanese bagrid catfishes. Ichthyol. Res. 2003; 50: 140–148.CrossRefGoogle Scholar
  32. 32.
    Yamada M, Higuchi M, Goto A. Extensive introgression of mitochondrial DNA found between two genetically divergent forms of the threespine stickleback, Gasterosteus aculeatus, around Japan. Environ. Biol. Fish. 2001; 61: 269–284.CrossRefGoogle Scholar
  33. 33.
    Watanabe K, Mori S, Nishida M. Genetic relationships and origin of two geographic groups of the freshwater threespine stickleback, ‘Hariyo’. Zool. Sci. 2003; 20: 265–274.PubMedCrossRefGoogle Scholar
  34. 34.
    Mock KE, Evans RP, Crawford M, Cardall BL, Janecke SU, Miller MP. Rangewide molecular structuring in the Utah sucker (Catostomus ardens). Mol. Ecol. 2006; 15: 2223–2238.PubMedCrossRefGoogle Scholar
  35. 35.
    Chen D, Zhang C, Lu C, Chang Y, Chang J. Amplified fragment length polymorphism analysis to identify the genetic structure of the Gymnocypris przewalskii (Kessler, 1876) population from the Qinghai Basin, China. J. Appl. Ichthyol. 2005; 21: 178–183.CrossRefGoogle Scholar
  36. 36.
    Birky CW, Maruyama T, Fuerst P. An approach to population and evolutionary genetic theory for genes in mitochondria and chloroplasts, and some results. Genetics 1983; 103: 513–527.PubMedGoogle Scholar
  37. 37.
    Mundy NI, Winchell CS, Burr T, Woodruff DS. Microsatellite variation and microevolution in the critically endangered San Clemente Island loggerhead shrike (Lanius ludovicianus mearnsi). Proc. R. Soc. Lond. B 1997; 264: 869–875.CrossRefGoogle Scholar
  38. 38.
    Dawson DA, Burland TM, Douglas A, Le Comber S, Bradshaw M. Isolation of microsatellite loci in the freshwater fish, the bitterling Rhodeus sericeus (Teleostei: Cyprinidae). Mol. Ecol. Notes 2003; 3: 199–202.CrossRefGoogle Scholar
  39. 39.
    Iguchi K, Watanabe K, Nishida M. Reduced mitochondrial DNA variation in hatchery populations of ayu (Plecoglossus altivelis) cultured for multiple generations. Aquaculture 1999; 178: 235–243.CrossRefGoogle Scholar
  40. 40.
    Ikeda M, Takagi S, Taniguchi N. Relationships between genetic diversity and number of successive generations in hatchery populations of ayu Plecoglossus altivelis assessed by microsatellite DNA polymorphism. Nippon Suisan Gakkaishi 2005; 71: 768–774.CrossRefGoogle Scholar
  41. 41.
    Schönhuth S, Luikart G, Doadrio I. Effects of a founder event and supplementary introductions on genetic variation in a captive breeding population of the endagered Spanish killifish. J. Fish Biol. 2003; 63: 1538–1551.CrossRefGoogle Scholar
  42. 42.
    Leberg PL. Strategies for population reintroduction: effects of genetic variability on population growth and size. Conserv. Biol. 1993; 7: 194–199.CrossRefGoogle Scholar
  43. 43.
    Quattro JM, Vrijenhoek RC. Fitness differences among remnant populations of the endangered Sonoran topminnow. Science 1989; 245: 976–978.PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society of Fisheries Science 2008

Authors and Affiliations

  • Hitoshi Kubota
    • 1
  • Katsutoshi Watanabe
    • 2
  • Yoko Kakehi
    • 3
  • Seiichi Watanabe
    • 4
  1. 1.Tochigi Prefectural Fisheries Experiment StationOhtawara, TochigiJapan
  2. 2.Department of Zoology, Graduate School of ScienceKyoto UniversitySakyo, KyotoJapan
  3. 3.Tansui-seibutsuKuwana, MieJapan
  4. 4.Department of Marine BioscienceTokyo University of Marine Science and TechnologyMinato, TokyoJapan

Personalised recommendations