Fisheries Science

, 74:200

Acetyl- and butyrylcholinesterase inhibitory activities of sterols and phlorotannins from Ecklonia stolonifera

  • Na Y Yoon
  • Hae Y Chung
  • Hyeung R Kim
  • Jae E Choi
Article

Abstract

As part of this study on the isolation of cholinesterase inhibitors from natural marine products, the bioactivity of the ethanolic extracts from 27 Korean seaweeds were screened using acetylcholinesterase (AChE) and butyrylcholine sterase (BChE) inhibitory assays. Ecklonia stolonifera exhibited promising inhibitory properties against both AChE and BChE. Bioassay-guided fractionation of the active n-hexane and ethyl acetate (EtOAc) soluble fractions, obtained from the ethanolic extract of E. stolonifera, resulted in the isolation of the sterols; fucosterol (1) and 24-hydroperoxy 24-vinylcholesterol (2), from the n-hexane fraction and the phlorotannins; phloroglucinol (3), ecks-tolonol (4), eckol (5), phlorofucofuroeckol-A (6), dieckol (7), triphlorethol-A (8), 2-phloroeckol (9) and 7-phloroeckol (10), from the EtOAc fraction. Of these, compounds 2, 9 and 10 were isolated from E. stolonifera for the first time. Compounds 4–7, 9 and 10 exhibited inhibitory potential against AChE, with 50% inhibition concentration (IC50) values of 42.66±8.48, 20.56±5,61, 4.89±2.28, 17.11±3.24, 38.13±4.95 and 21.11±4.16 μM, respectively; whereas, compounds 1, 2, 4 and 6 were found to be active against BChE, with IC50 values of 421.72±1.43, 176.46±2.51, 230.27±3.52 and 136.71±3.33 μM, respectively. It has been suggested that the inhibition of these enzymes by the sterols and phlorotannins derived from marine brown algae could be a useful approach for the treatment of Alzheimer’s disease.

Key words

chollnesterase inhibition Ecklonia stolonifera phlorotannins seaweeds sterols 

References

  1. 1.
    Alzheimer A. Über eine eijenartige Erkrankung der Hirnride. Allg. Z. Psychiatr. 1907; 64: 146–148.Google Scholar
  2. 2.
    Davies P, Maloney AJF. Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 1976; 2: 1403.PubMedCrossRefGoogle Scholar
  3. 3.
    Whitehouse PJ, Price DL, Struble GR, Clarke AW, Coyle JT, DeLong MR. Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 1982; 15: 1237–1239.CrossRefGoogle Scholar
  4. 4.
    Schulz V. Ginkgo extract or, cholinesterase inhibitors in patients with dementia: what clinical trials and guidelines fail to consider. Phytomedicine 2003; 10: 74–79.PubMedCrossRefGoogle Scholar
  5. 5.
    Small GW, Robins RV, Barry PP, Buckholts NS, Dekosky ST, Ferris SH, Finkel SI, Gwyther LP, Khachaturian ZS, Lebowitz BD, McRae TD, Morris JO, Oakley F, Schneider LS, Streim JE, Sunderland T, Teri LA, Tune LE. Diagnosis and treatment of Alzheimer’s disease and related disorder. JAMA 1997; 278: 1363–1371PubMedCrossRefGoogle Scholar
  6. 6.
    Melzer D. New drug treatment for Alzheimer’s disease: lesson for healthcare policy. BMJ 1998; 316: 762–764.PubMedGoogle Scholar
  7. 7.
    Rahman AU, Parveen S, Khalid A, Farooq A, Choudhary MI. Acetyl and butyrylcholinesterase-inhibiting triterpenoid alkaloids from Buxus papillosa. Phytochemistry 2001; 58: 963–968.CrossRefGoogle Scholar
  8. 8.
    Cláudia V Jr, Bolzani VS, Pimentel LSB, Castro NG, Cabral RR, Costa RS, Floyd C, Rocha MS, Young MCM, Barreiro EJ, Fraga CAM. New selective acetylcholinesterase inhibitors designed from natural piperidine alkaloids. Bioorg. Med. Chem. 2005; 13: 4184–4190.CrossRefGoogle Scholar
  9. 9.
    Cho KM, Yoo ID, Kim WG. 8-Hydroxydihydrochelerythrine and 8-hydroxydihytrosanguinarine with a potent acetylcholinesterase inhibitory activity from Chelidonium majus L. Biol. Pharm. Bull. 2006; 29: 2317–2320.PubMedCrossRefGoogle Scholar
  10. 10.
    Kim DK, Lee KT, Baek NI, Kim SH, Park HW, Lim JP, Shin TY, Eom DO, Yang JH, Eun JS. Acetylcholinesterase inhibitors from the aerial parts of Corydalis speciosa. Arch. Pharm. Res. 2004; 27: 1127–1131.PubMedCrossRefGoogle Scholar
  11. 11.
    Rahman AU, Wahab AT, Nawaz SA, Choudhary MI. New cholinesterase inhibiting bisbenzylisoquinoline alkaloids from Cocculus pendulus. Chem. Pharm. Bull. 2004; 52: 802–806.CrossRefGoogle Scholar
  12. 12.
    Decker M. Novel inhibitors of acetyl- and butyrylcholinesterase derived from the alkaloids dehydroevodiamine and rutaecarpine. Eur. J. Med. Chem. 2005; 40: 305–313.PubMedCrossRefGoogle Scholar
  13. 13.
    Rahman AU, Akhtar MN, Choudhary MI, Tsuda Y, Sener B, Khalid A, Parvez M. New steroidal alkaloids from Fritillaria imperialis and their cholinesterase inhibiting activities. Chem. Pharm. Bull. 2002; 50: 1013–1016.CrossRefGoogle Scholar
  14. 14.
    Ryu GS, Park SH, Kim ES, Choi BW, Ryu SY, Lee BH. Cholinesterase inhibitory activity of two farnesylacetone derivatives from the brown alga Sargassum sagamianum. Arch. Pharm. Res. 2003; 26: 796–799.PubMedCrossRefGoogle Scholar
  15. 15.
    Ucar G, Gokhan N, Yesilada A, Bilgin AA. 1-N-substituted thiocarbomoyl-3-phenyl-5-thienyl-2-prozolines: a novel cholinesterase and selected monoamine oxidase B inhibitors for the treatment of Parkinson’s and Alzheimer’s diseases. Neurosci. Lett. 2005; 382: 327–331.PubMedCrossRefGoogle Scholar
  16. 16.
    Chounhary MI, Yousuf S, Nawaz SA, Ahmed S, Rahman AU. Cholinesterase inhibiting withanolides from Withania somnifera. Chem. Pharm. Bull. 2004; 52: 1358–1361.CrossRefGoogle Scholar
  17. 17.
    Perry NS, Houghton PJ, Theobald A, Jennar P, Perry EK. In vitro inhibition of human erythrocyte acetylcholinesterase by Salvia lavandulaefolia essential oil and constituent terpenes. J. Pharm. Parmacol. 2000; 52: 895–902.CrossRefGoogle Scholar
  18. 18.
    Savelev S, Okello E, Perry NSL, Wilkins RM, Perry EK. Synergistic and antagonistic interactions of anticholinesterase terpenoids in Salvia lavandulaefolia essential oil. Pharmacol. Biochem. Behav. 2003; 75: 661–668.PubMedCrossRefGoogle Scholar
  19. 19.
    Lee JH, Lee KT, Yang JH, Baek NL, Kim DK. Acetylcholinesterase inhibitors from the twigs of Vaccinium oldhami Miquel. Arch. Pharm. Res. 2004; 27: 53–56.PubMedCrossRefGoogle Scholar
  20. 20.
    Orhan I, Terzioglu S, Sener B. Alpha-onocerin: an acetylcholinesterase inhibitor from Lycopodium clavatum. Planta Med. 2003; 69: 265–267.PubMedCrossRefGoogle Scholar
  21. 21.
    Yoo ID, Cho KM, Lee CK, Kim WG. Isoterreulactone A, a novel meroterpenoid with anti-acetylcholinesterase activity produced by Aspergillus terreus Bioorg. Med. Chem. Lett. 2005; 15: 353–356.PubMedCrossRefGoogle Scholar
  22. 22.
    Cho KM, Kim WG, Lee CK, Yoo ID. Terreulactones A, B, C, and D: novel acetylcholinesterase inhibitors produced by Aspergillus terreus. I. Taxonomy, fermentation, isolation and biological activities. J. Antibiot. 2003; 56: 344–350.PubMedGoogle Scholar
  23. 23.
    Mizayawa M, Tsukamoto T, Anzai J, Ishikawa Y. Insecticidal effect of phthalides and furanocoumarins from Angelica acutiloba against Drosophila melanogaster. J. Agric. Food Chem. 2004; 52: 4401–4405.CrossRefGoogle Scholar
  24. 24.
    Kang SY, Lee KY, Sung SH, Park MJ, Kim YC. Coumarins isolated from Angelica gigas inhibit acetylcholinesterase: structure-activity relationships. J. Nat. Prod. 2001; 64: 583–685.CrossRefGoogle Scholar
  25. 25.
    Urbain A, Marston A, Queriroz EF, Ndjoko K, Hostettmann K. A new coumarin from Murraya paniculata. Planta Med. 2004; 70: 1011–1014.PubMedCrossRefGoogle Scholar
  26. 26.
    Ahmad I, Anis I, Malik A, Nawaz SA, Choudhary MI. A new coumarin from Murraya paniculata. Chem. Pharm. Bull. 2003; 51: 412–414.PubMedCrossRefGoogle Scholar
  27. 27.
    Bruehlmann C, Marston A, Hostettmann K, Carrupt PA, Testa B. Screening of non-alkaloidal natural compounds as acetylcholinesterase inhibitors. Chem. Biodiversity 2004; 1: 819–829.CrossRefGoogle Scholar
  28. 28.
    Ahmed E, Nawaz SA, Malik A, Choudhary I. Isolation and cholinesterase-inhibition studies of sterol from Haloxylon recuvum. Bioorg. Med. Chem. Lett. 2006; 16: 573–580.PubMedCrossRefGoogle Scholar
  29. 29.
    Chapman VJ, Champman DJ. Seaweeds and Their Uses. Champman and Hall, New York, 1980; 62–97.Google Scholar
  30. 30.
    Hoppe HA, Lerving T. Marine Algae in Pharmaceutical Science, Vol. 2. Walter de Gruyter, Berlin, 1982; 3–48.Google Scholar
  31. 31.
    Srivastava R, Kulshreshtha DK. Bioactive polysaccharide from plants. Phytochemistry 1989; 28: 2877–2883.CrossRefGoogle Scholar
  32. 32.
    Okada Y, Ishimaru A, Suzuki R, Okuyama T. A new phloro-glucinol derivative from the brown alga Eisenia bicylis: potential for the effective treatment of diabetic complications. J. Nat. Prod. 2004; 67: 103–105.PubMedCrossRefGoogle Scholar
  33. 33.
    Noda H, Amano H, Arashima K, Hashimoto S, Nisizawa K. Studies on the antitumor activity of marine algae. Nippon Suisan Gakkaishi 1989; 55: 1259–1264.Google Scholar
  34. 34.
    Kim YC, An RB, Yoon NY, Nam TJ, Choi JS. Hepatoprotective constituents of the edible brown alga Ecklonia stolonifera on tacrine-induced cytotoxicity in Hep G2 cells. Arch. Pharm. Res. 2005; 28: 1376–1380.PubMedCrossRefGoogle Scholar
  35. 35.
    Ahn MJ, Yoon KD, Kim CY, Min SY, Kim YU, Kim HJ, Kim JH, Shin CG, Lee CK, Kim TG, Kim SH Huh H, Kim JW. Inhibition of HIV-1 reverse transcriptase and HIV-1 integrase and antiviral activity of Korean seaweed extracts. J. Appl. Phycol. 2002; 14: 325–329.CrossRefGoogle Scholar
  36. 36.
    Fukuyama Y, Kodama M, Miura J, Kinzyo Z, Mori H, Nakayama Y, Takahashi M. Structure of an anti-plasmin inhibitor, eckol, isolated from the brown alga Ecklonia kurome Okamura and inhibitory activities of its derivatives on plasma plasmin inhibitors. Chem. Pharm. Bull. 1989; 37: 349–353.PubMedGoogle Scholar
  37. 37.
    Fukuyama Y, Kodama M, Miura I, Kinzyo Z, Mori H, Nakayama Y, Takahashi M. Anti-plasmin inhibitor. VI. Structure of phlorofucofuroeckol A, a novel phlorotannin with both dibenzo-1,4-dioxin and dibenzofuran elements, from Ecklonia kurome Okamura. Chem. Pharm. Bull. 1990; 38: 133–135.PubMedGoogle Scholar
  38. 38.
    Nagayama K, Shibata T, Fujimoto K, Honjo H, Nakamura T. Algicidal effect of phlorotannins from the brown alga Ecklonia kurome on red tide microalgae. Aquaculture 2003; 218: 601–611.CrossRefGoogle Scholar
  39. 39.
    Kang HS, Kim HR, Byun DS, Son BW, Nam TJ, Choi JS. Tyrosinase inhibitors isolated from the edible brown alga Ecklonia stolonifera. Arch. Pharm. Res. 2004; 27: 1226–1232.PubMedCrossRefGoogle Scholar
  40. 40.
    Shin HC, Hwang HJ, Kang KJ, Lee BH. An antioxidative and anti-inflammatory agent for potential treatment of osteoarthritis from Ecklonia cava. Arch. Pharm. Res. 2006; 29: 165–171.PubMedCrossRefGoogle Scholar
  41. 41.
    Choi JS, Lee JH, Jung JH. The screening of nitrite scavenging effect of marine algae and active principles of Ecklonia stolonifea. J. Kor. Fish. Soc. 1997; 30: 909–915.Google Scholar
  42. 42.
    Kim MM, Ta QV, Mendis E, Rajapakse N, Jung WK, Byun HK, Jeon YJ, Kim SK. Phlorotannins in Ecklonia cava extract inhibit matrix metalloproteinase activity. Life Sci. 2006; 79: 1436–1443.PubMedCrossRefGoogle Scholar
  43. 43.
    Joe MJ, Kim SN, Choi HY, Shin WS, Park GM, Kang DW, Kim YK. The inhibitory effects of eckol and dieckol from Ecklonia stolonifera on the expression of matrix metalloproteinase-I in human dermal fibroblasts. Biol. Pharm. Bull. 2006; 29: 1735–1739.PubMedCrossRefGoogle Scholar
  44. 44.
    Athukorala Y, Jung WK, Vasanthan T, Jeon YJ. An anticoagulative polysaccharide from an enzymatic hydrolysate of Ecklonia cava. Carbohydr. Polym. 2006; 66: 184–191.CrossRefGoogle Scholar
  45. 45.
    Yuan YV, Walsh NA. Antioxidant and antiproliferative activities of extracts from a variety of edible seaweeds. J Food Chem. Toxicol. 2006; 44: 1144–1150.CrossRefGoogle Scholar
  46. 46.
    Kang HS, Chung HY, Kim JY, Son BW, Jung HA, Choi JS. Inhibitory phlorotannins from the edible brown alga Ecklonia stolonifera on total reactive oxygen species (ROS) generation. Arch. Pharm. Res. 2004; 27: 194–198.PubMedCrossRefGoogle Scholar
  47. 47.
    Kang HS, Chung HY, Jung JH, Son BW, Choi JS. A new phlorotannin from the brown alga Ecklonia stolonifera. Chem. Pharm. Bull. 2003; 51: 1012–1014.PubMedCrossRefGoogle Scholar
  48. 48.
    Sugiura Y, Matsuda K, Yamada Y, Nishikawa M, Shioya K, Katsuzaki H, Imai K, Amano H. Isolation of a new antiallergic phlorotannin, phlorofucofuroeckol-B, from an edible brown alga, Eisenia arborea. Biosci. Biotechnol. Biochem. 2006; 70: 2807–2811.PubMedCrossRefGoogle Scholar
  49. 49.
    Park CS, Hwang EK, Lee SJ, Roh KW, Sohn CH. Age of growth of Ecklonia stolonifera Okamura in Pusan bay, Korea. Bull. Kor. Fish. Soc. 1994; 27: 390–396.Google Scholar
  50. 50.
    Taniguchi K, Kurata K, Suzuki M. Feeding-detergent effect of phlorotannins from the brown alga Ecklonia stolonifera against the abalone Haliotis discus hannai. Nippon Suisan Gakkaishi 1991; 57: 2065–2071.Google Scholar
  51. 51.
    Park DC, Ji CI, Jung KJ, Lee TG, Kim IS, Park YH, Kim SB. Characteristics of tyrosinase inhibitory extract from Ecklonia stolonifera. J. Kor. Fish. Soc. 2000; 3: 195–199.Google Scholar
  52. 52.
    Jung HA, Hyun SK, Kim HR, Choi JS. Angiotensin-converting enzyme I inhibitory activity of phlorotannins from Ecklonia stolonifera. Fish. Sci. 2006; 72: 1292–1299.CrossRefGoogle Scholar
  53. 53.
    Ellman GL, Courtney D, Andres KDV, Featherstone RM. A new and rapid colorimetric determination of acetylcholineserase activity. Biochem. Pharmacol. 1961; 7: 88–95.PubMedCrossRefGoogle Scholar
  54. 54.
    Govindan M, Hodge JD, Brown KA, Nunez-Smith M. Distribution of cholesterol in Caribbean marine algae. Steroids 1993; 58: 178–180.PubMedCrossRefGoogle Scholar
  55. 55.
    Sheu JH, Wang GH, Sung PJ, Chiu YH, Duh CY. Chtotoxic sterols from the Formosan brown alga Turbinaria ornate. Planta Med. 1997; 63: 571–572.PubMedCrossRefGoogle Scholar
  56. 56.
    Fukuyama Y, Miura I, Kinzyo Z, Mori H, Kido M, Nakayama Y, Takahashi M, Ochi M. Eckols, novel phlorotannins with a dibenzo-p-dioxin skeleton possessing inhibitory effects on α2-macroglobulin from the brown alga Ecklonia kurome Okamura. Chem. Lett. 1985, 739–742.Google Scholar
  57. 57.
    Houghton PJ, Ren Y, Howes MJ. Acetylcholinesterase inhibitors from plants and fungi. Nat. Prod. Rep. 2006; 23: 181–199.PubMedCrossRefGoogle Scholar
  58. 58.
    Silman I, Sussman JL. Acetylcholinesterase: ‘classical’ and ‘non-classical’ functions and pharmacology. Curr. Opin. Pharmacol. 2005; 5: 293–302.PubMedCrossRefGoogle Scholar
  59. 59.
    Soreq H, Seidman S. Acetylcholinesterase-new roles for an old actor. Nat. Rev. Neurosci. 2001; 2: 294–302.PubMedCrossRefGoogle Scholar
  60. 60.
    Mack A, Robitzki A. The key, role of butyrylcholinesterase during neurogenesis and neural disorders: an antisense-5′-butyrylcholinesterase-DNA study. Prog. Neurobiol 2000; 60: 607–628.PubMedCrossRefGoogle Scholar
  61. 61.
    Rakinczay Z, Brimijoin S. Biochemistry and pathophysiology of the molecular forms of cholinesterase. Subcell. Biochem. 1988; 12: 335–378.Google Scholar
  62. 62.
    Giacobini E. Drugs that target cholinesterase. In: Buccafusco JJ (ed.). Cognitive Enhancing Drugs. Birkhäuser-Verlag. Basel. 2004: 11–36.Google Scholar
  63. 63.
    Yu SQ, Utsuki HW, Brossi T, Greig ANH. Synthesis of novel phenserine-based-selective inhibitors of butyrylcholinesterase for Alzheimer’s disease. J. Med. Chem. 1999; 42: 1855–1861.PubMedCrossRefGoogle Scholar
  64. 64.
    Myung CS, Shin HC, Bao HY, Yeo SJ, Lee BH, Kang JS. Improvement of memory by dieckol and phlorofucofuroeckol in ethanol-treated mice: possible involvement of the inhibition of acetylcholinesterase. Arch. Pharm. Res. 2005; 28: 691–698.PubMedCrossRefGoogle Scholar
  65. 65.
    Lee SH, Lee YS, Jung SH, Kang SS, Shin KH. Anti-oxidant activities of fucosterol from the marine algae Pelvetia siliquosa. Arch. Pharm. Res. 2003; 26: 719–722.PubMedCrossRefGoogle Scholar
  66. 66.
    Lee YS, Shin KH, Kim BK, Lee SH. Anti-diabetic activities of fucosterol from Pelvetia siliquosa. Arch. Pharm. Res. 2004; 27: 1120–1122.PubMedCrossRefGoogle Scholar
  67. 67.
    Brenner GM. Pharmacology. W.B. Saunders Company, Philadelphia, PA. 2000.Google Scholar

Copyright information

© The Japanese Society of Fisheries Science 2008

Authors and Affiliations

  • Na Y Yoon
    • 1
  • Hae Y Chung
    • 2
  • Hyeung R Kim
    • 1
  • Jae E Choi
    • 1
  1. 1.Division of Food Science and BiotechnologyPukyong National UniversityBusanJapan
  2. 2.College of PharmacyPusan National UniversityBusanRepublic of Korea

Personalised recommendations