Advertisement

Fisheries Science

, Volume 74, Issue 1, pp 137–145 | Cite as

Effects of irradiance of various wavelengths from light-emitting diodes on the growth of the harmful dinoflagellate Heterocapsa circularisquama and the diatom Skeletonema costatum

  • Seok Jin Oh
  • Dae -Il Kim
  • Takao Sajima
  • Yohei Shimasaki
  • Yukihiko Matsuyama
  • Yuji Oshima
  • Tsuneo Honjo
  • Han -Soeb Yang
Article

Abstract

We investigated the effects of specific light wavelengths from light-emitting diodes (LEDs) on the growth of the dinoflagellate Heterocapsa circularisquama, which kills bivalves, and the diatom Skeletonema costatum, which is an important food source for bivalves. Growth of H. circularisquama was obviously inhibited at 590 nm and a photon flux density less than 75 μmol quanta/m2/s. However, growth of S. costatum was not suppressed by irradiance from any LEDs tested from near-ultraviolet to near-infrared wavelengths at 75 μmol quanta/m2/s. The growth rate of H. circularisquama in an experimental treatment group with irradiance provided by both cool-white fluorescent lamps (12∶12 h L:D cycle) and a 590-nm LED (continuous irradiance) was 0.43/day. In the control group with irradiance provided only by cool-white fluorescent lamps (12∶12 h L:D cycle), the growth rate was 0.63/day, indicating that growth of H. circularisquama was suppressed by 590 nm (less than 75 μmol quanta/m2/s) irradiance from the LED and the continuous irradiance. The use of 590-nm LEDs in bivalve culture at irradiance levels less than 75 μmol quanta/m2/s might encourage the growth of the useful diatom S. costatum without stimulating growth of the harmful dinoflagellate H. circularisquama.

Key Words

Heterocapsa circularisquama irradiance light wavelengths light-emitting diode Skeletonema costatum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wallen DG, Geen GH. Light quality in relation to growth, photosynthetic rates and carbon metabolism in two species of marine plankton algae. Mar. Biol. 1971; 10: 34–43.CrossRefGoogle Scholar
  2. 2.
    Rowan KS. Photosynthetic Pigments of Algae. Cambridge University Press, Cambridge. 1989.Google Scholar
  3. 3.
    Voskresenskaya NP. Blue-light and carbon metabolism. Ann. Rev. Plant. Physiol. 1972; 23: 219–234.CrossRefGoogle Scholar
  4. 4.
    Jeffrey SW, Vesk M. Effect of blue-green light on photosynthetic pigments and chloroplast structure in the marine diatom Stephanopyxis turris. J. Phycol. 1977; 13: 271–279.Google Scholar
  5. 5.
    Vesk M, Jeffrey SW. Effect of blue-green light on photosynthetic pigments and chloroplast structure in unicellular marine algae from six classes. J. Phycol. 1977; 13: 280–288.Google Scholar
  6. 6.
    Glover HE, Keller MD, Spinrad RW. The effects of light quality and intensity on photosynthesis and growth of marine eukaryotic and prokaryotic phytoplankton clones. J. Exp. Mar. Biol. Ecol. 1987; 105: 137–159.CrossRefGoogle Scholar
  7. 7.
    Nielsen MV, Sakshaug E. Photobiological studies of Skeletonema costatum adapted to spectrally different light regimes. Limnol. Oceanogr. 1993; 38: 1576–1581.Google Scholar
  8. 8.
    Sánchez-Saavedra MP, Voltolina D. The chemical composition of Chaetoceros sp. (Bacillariophyceae), under different light conditions. Comp. Biochem. Physiol. 1994; 107B: 39–44.Google Scholar
  9. 9.
    Mouget J-L, Rosa P, Tremblin G. Acclimation of Haslea ostrearia to light of different spectral qualities — confirmation of ‘chromatic adaptation’ in diatoms. J. Photochem. Photobiol. B Biol. 2004; 75: 1–11.CrossRefGoogle Scholar
  10. 10.
    Humphrey GH. The effect of the spectral, composition of light on the growth, pigments and photosynthetic rate of unicellular algae. J. Exp. Mar. Biol. Ecol. 1983; 66: 49–67.CrossRefGoogle Scholar
  11. 11.
    Figueroa FL, Aguilera J, Niell FX. Red and blue light regulation of growth and photosynthetic metabolism in Porphyra umbilicalis (Bangiales, Rhodophyta). Eur. J. Phycol. 1995; 30: 11–18.CrossRefGoogle Scholar
  12. 12.
    Mercado JM, Sánchez-Saavedra MP, Correa-Reyes G, Lubián L, Montero O, Figueroa FL. Blue light effects on growth, light absorption characteristics and photosynthesis of five benthic diatom strains. Aquat. Bot. 2004; 78: 265–277.CrossRefGoogle Scholar
  13. 13.
    Flaak AR, Epifanio CE. Dietary levels and growth of the oyster Crassostrea virginica. Mar. Biol. 1978; 15: 157–163.CrossRefGoogle Scholar
  14. 14.
    Sánchez-Saavedra MP, Voltolina D. The effect of different light quality on the food value of the diatom Chaetoceros sp. Fpr Artemia franciscana Kellogg. Riv. Italian Aquacolt. 1995; 30: 135–138.Google Scholar
  15. 15.
    Sánchez-Saavedra MP, Voltolina D. Effect of blue-green light on growth rate and chemical composition of three diatoms. J. Appl. Phycol. 1996; 8: 131–137.CrossRefGoogle Scholar
  16. 16.
    Matthijs HCP, Balke H, Hes UMV, Kroon BMA, Mur LR, Binot RA. Application of light-emitting diodes in bioreactors: flashing light effects and energy economy in algal cultures. Biotechnol. Bioeng. 1996; 50: 98–107.PubMedCrossRefGoogle Scholar
  17. 17.
    Bertling K, Hurse TJ, Kappler U, Rakiæ AD. Lasers—an effective artificial source of radiation for the cultivation of anoxygenic photosynthetic bacteria. Biotechnol. Bioeng. 2006; 94: 337–345.PubMedCrossRefGoogle Scholar
  18. 18.
    Okaichi T. Red-tide phenomena. In: Okaichi T (ed.). Red Tides. Kluwer, Tokyo, 2003; 7–60.Google Scholar
  19. 19.
    Oh SJ, Matsuyama Y, Yamamoto T, Nakajima M, Takatsuzi H, Fujisawa K. Recent developments and causes of harmful dinoflagellate blooms in the Seto Inland Sea — Ecological Importance of dissolved organic phosphorus (DOP). Bull. Coastal Oceanogr. 2005; 43: 85–95.Google Scholar
  20. 20.
    Horiguchi T. Heterocapsa circularisquama sp. nov. (Peridiniales, Dinophyceae): a new marine dinoflagellate causing mass mortality of bivalves in Japan. Phycol. Res. 1995; 43: 129–136.CrossRefGoogle Scholar
  21. 21.
    Ogata T, Pholpunthin P, Fukuyo Y, Kodama M. Occurrence of Alexandrium cohorticula in Japanese coastal water. J. Appl. Phycol. 1990; 2: 351–356.CrossRefGoogle Scholar
  22. 22.
    Ikeda T, Matsuno S, Sato A, Ogata T, Kodama M, Fukuyo Y, Takayama H. First report on paralytic shellfish poisoning caused by Gymnodinium catenatum Graham (Dinophyceae) in Japan. In: Okaichi T, Anderson DM, Nemoto T (eds). Red Tides, Elsevier, New York. 1989; 411–414.Google Scholar
  23. 23.
    Matsuyama Y, Kimura A, Fujii H, Takayama H, Uchida T. Occurrence of Heterocapsa circularisquama red tide and subsequent damages to shellfish in western Hiroshima Bay, Seto Inland Sea, Japan, in 1995. Bull. Nansei. Natl. Fish. Res. Inst. 1997; 30: 189–207.Google Scholar
  24. 24.
    Sato Y, Oda T, Matsuyama T, Matsuyama Y, Honjo T. Photosensitizing hemolytic toxin in Heterocapsa circularisquama, a newly identified harmful red tide dinoflagellate. Aquat. Toxicol. 2002; 56: 191–196.PubMedCrossRefGoogle Scholar
  25. 25.
    Matsuyama Y, Uchida T, Honjo T. Heterocapsa circularisquama. In: Okaichi T (ed.). Red Tides. Kluwer, Tokyo. 2003; 371–393.Google Scholar
  26. 26.
    Matsuyama Y, Nagai K, Mizuguchi T, Fujiwara M, Ishimura M, Yamaguchi M, Uchida T, Honjo T. Ecological features and mass mortality of pearl oysters during red tide of Heterocapsa sp. in Ago Bay in 1992. Nippon Suisan Gakkaishi 1995; 61: 35–41.Google Scholar
  27. 27.
    Nagai K, Matsuyama Y, Uchida T, Yamaguchi M, Ishimura M, Nishimura A, Akamatsu S, Honjo T. Toxicity and LD50 levels of the red tide dinoflagellate Heterocapsa circularisquama on juvenile pearl oyster. Aquaculture 1996; 144: 149–154.CrossRefGoogle Scholar
  28. 28.
    Matsuyama Y. Physiological and ecological studies on the mechanisms of red tide outbreak due to harmful dinoflagellate Heterocapsa circularisquama and its effects on bivalve mollusks. PhD Thesis, Kyushu University, Kyushu. 2001 (in Japanese).Google Scholar
  29. 29.
    Yamamoto C, Tanaka Y. Two species of harmful red tide plankton increased in Fukuoka Bay. Bull. Fukuoka Fish. Exp. Stn. 1990; 16: 43–44.Google Scholar
  30. 30.
    Matsuyama Y, Uchida T, Honjo T. Toxic effects of the dinoflagellate Heterocapsa circularisquama on clearance rate of the blue mussel Mytilus galloprovincialis Mar. Ecol. Prog. Ser. 1997; 146: 73–80.CrossRefGoogle Scholar
  31. 31.
    Lee C-G, Palsson BØ. High-density algal photobioreactors using light-emitting diodes. Biotechnol. Bioeng. 1994; 44: 1161–1167.PubMedCrossRefGoogle Scholar
  32. 32.
    Michel K, Eisentrager A. Light-emitting diodes for the illumination of algae in ecotoxicity testing. Environ. Toxicol. 2004; 19: 609–613.PubMedCrossRefGoogle Scholar
  33. 33.
    Guillard RRL, Ryther D. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 1962; 8: 229–239.PubMedGoogle Scholar
  34. 34.
    Lederman TC, Tett P. Problems in modeling the photosynthesis-light relationship for phytoplankton. Bot. Mar. 1981; 24: 125–134.CrossRefGoogle Scholar
  35. 35.
    Sosik HM. Storage of marine particulate samples for light-absorption measurements. Limnol. Oceanogr. 1999; 44: 1139–1141.CrossRefGoogle Scholar
  36. 36.
    United Nations Educational, Scientific and Cultural Organization. Determination of photosynthetic pigments in sea water. In: Seawater-Rep, SCOR/UNESCO Working Group. Monographs on Oceanographic Methodology. United Nations Educational, Scientific and Cultural Organization, Paris. 1966; 1–69.Google Scholar
  37. 37.
    Mercado JM, Sánchez P, Carmona R, Niell FX. Limited acclimation of photosynthesis to blue light in the seaweed Gracilaria tenuistipitata. Physiol. Plant. 2002; 114: 491–498.PubMedCrossRefGoogle Scholar
  38. 38.
    Nelson NB, Prézelin BB. Chromatic light effects and physiological modeling of absorption properties of Heterocapsa pygmaea (=Glenodinium sp.). Mar. Ecol. Prog. Ser. 1990; 63: 37–46.CrossRefGoogle Scholar
  39. 39.
    Correa-Reyes, JG, Sánchez-Saavedra MP, Siqueiros-Beltrones DA. Flores-Acevedo N. Isolation and growth of eight strains of benthic diatoms, cultured under two light conditions. J. Shellfish Res. 2001; 20: 603–610.Google Scholar
  40. 40.
    Tremblin G, Cannuel R, Mouget J-L, Rech M, Robert JM. Change in light quality due to a blue-green pigment, marennine, released in oyster-ponds: effect on growth and photosynthesis in two diatoms, Haslea ostrearia and Skeletonema costatum. J. Appl. Phycol. 2000; 12: 557–566.CrossRefGoogle Scholar
  41. 41.
    Brand LE, Guillard RRL. The effects of continuous light and light intensity on the reproductive rates of twenty-two species of marine phytoplankton. J. Exp. Mar. Biol. Ecol. 1981; 50: 119–132.CrossRefGoogle Scholar
  42. 42.
    Gilstad M, Johnsen G, Sakshaug E. Photosynthetic parameters, pigment composition and respiration rates of the marine diatom Skeletonema costatum in continuous light and a 12∶12 h light-dark cycle. J. Plankton Res. 1993; 15: 939–951.CrossRefGoogle Scholar
  43. 43.
    Gallagher JC. Physiological variation and electrophoretic banding patterns of genetically different seasonal populations of Skeletonema costatum (Bacillariophyceae). J. Phycol. 1982; 18: 148–162.CrossRefGoogle Scholar
  44. 44.
    Nishikawa T. Futatabi akashiwo ni tsuite. Zool. Mag. 1903; 15: 347–353 (in Japanese).Google Scholar
  45. 45.
    Kobayashi S. Red tide and pearl culture. Shinju no Kenkyu 1950; 1: 13–24 (in Japanese).Google Scholar
  46. 46.
    Honjo T, Imada N, Oshima Y, Maema Y, Nagai K. Matsuyama Y, Uchida T. Potential transfer of Heterocapsa circularisquama with pearl oyster consignments. In: Reguera B, Blanco J, Fernandez ML, Wyatt T (eds). Harmful Algae. United Nations Educational, Scientific and Cultural Organization, Paris. 1998; 224–226.Google Scholar

Copyright information

© The Japanese Society of Fisheries Science 2008

Authors and Affiliations

  • Seok Jin Oh
    • 1
  • Dae -Il Kim
    • 2
  • Takao Sajima
    • 3
  • Yohei Shimasaki
    • 4
  • Yukihiko Matsuyama
    • 5
  • Yuji Oshima
    • 4
  • Tsuneo Honjo
    • 4
  • Han -Soeb Yang
    • 1
  1. 1.Korea Inter-University Institute of Ocean SciencePukyong National UniversityBusanKorea
  2. 2.Division of Maritime Environment ConservationIncheonKorea
  3. 3.Departments of Intelligent Machinery and SystemsKyushu UniversityFukuokaJapan
  4. 4.Laboratory of Marine Environmental Science, Bioscience and BiotechnologyKyushu UniversityFukuokaJapan
  5. 5.National Research Institute of Fisheries and Environment of Inland SeaFisheries Research AgencyHatsukaichi, HiroshimaJapan

Personalised recommendations