Genetic variation in mitochondrial genes and intergenic spacer region in harmful algae Chattonella species
- 128 Downloads
- 14 Citations
Abstract
In this study, nuclear ribosomal RNA gene internal transcribed spacer regions and the cox2-cox1 fragment of the mitochondrial (mt) genome were sequenced in 24 strains of Chattonella spp. Variability in both regions showed that the mt genome sequences of Chattonella spp. have a higher evolutionary rate than the nuclear rRNA gene sequences. A maximum likelihood tree based on the mt sequence grouped the Japanese Chattonella strains into two groups (Groups A and B), although no correlation was observed amongst the phylogenetic groups, their morphologies, or the isolated areas. Groups A and B were clearly identified by a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay using Fokl, without the need for a sequencing experiment. The PCR-RFLP assay revealed that Chattonella cells obtained from sea water in Oita, Japan, in 2004 and 2005 belonged to Group B. This is the first report showing the genetic variation in Chattonella spp. using a PCR-RFLP identification protocol.
Key words
Chattonella spp. cytochrome c oxidase subunit 1 (cox1) cytochrome c oxidase subunit 2 (cox2) genetic diversity harmful algae mitochondriaPreview
Unable to display preview. Download preview PDF.
References
- 1.Anderson DM. Red tides. Sci. Am. 1994; 271: 62–68.PubMedCrossRefGoogle Scholar
- 2.Smayda TJ. Bloom dynamics: physiology, behavior, trophic effects. Limnol. Oceanogr. 1997; 42: 1132–1136.CrossRefGoogle Scholar
- 3.Hallegraeff GM. A review of harmful algal blooms and their apparent global increase. Phycologia 1993; 32: 79–99.Google Scholar
- 4.Shimada M, Akagi N, Nakai Y, Goto H, Watanabe M, Nakanishi M, Yoshimatsu S, Ono C. Free radical production by the red tide algae, Chattonella antiqua. Histochem. J. 1991; 23: 361–365.CrossRefPubMedGoogle Scholar
- 5.Oda T, Ishimatsu A, Shimada M, Takeshita S, Muramatsu T. Oxygen-radical-mediated toxic effects of the red tide flagellate Chattonella marina on Vibrio alginolyticus. Mar. Biol. 1992; 112: 505–509.CrossRefGoogle Scholar
- 6.Marshall LA, Nichols PD, Hamilton B, Lewis RJ, Hallegraeff GM. Ichthyotoxicity of Chattonella marina (Raphidophyceae) to damselfish (Acanthochromis polycanthus): the synergistic role of reactive oxygen species and free fatty acids. Harmful Algae 2003; 2: 273–281.CrossRefGoogle Scholar
- 7.Hiroishi S, Okada H, Imai I, Yoshida T. High toxicity of the novel bloom-forming species Chattonella ovata (Raphidophyceae) to cultured fish. Harmful Algae 2005; 4: 783–787.CrossRefGoogle Scholar
- 8.Imai I. Current problems in classification and identification of marine raphidoflagellates (raphid ophycean flagellates): from the view point of ecological study. Bull. Plankton Soc. Jpn. 2000; 47: 55–64 (in Japanese).Google Scholar
- 9.Hosoi-Tanabe S, Ohtake I, Sako Y. Phylogenetic analysis of noxious red tide flagellates Chattonella antiqua. C. marina, C. ovata, and C. verruculosa (Raphidophyceae) based on the rRNA gene family. Fish. Sci. 2006; 72: 1200–1208.CrossRefGoogle Scholar
- 10.Kamikawa R, Asai J, Miyahara T, Murata K, Oyama K, Yoshimatsu S, Yoshida T, Sako Y. Application of a real-time PCR assay to a comprehensive method for monitoring harmful algae. Microbes Environ. 2006; 21: 163–173.CrossRefGoogle Scholar
- 11.Saccone C, Gissi C, Lanave C, Larizza A, Pesole G, Reyes A. Evolution of the mitochondrial genetic system: an overview. Gene 2000; 261: 153–159.CrossRefPubMedGoogle Scholar
- 12.Gray MW, Burger G, Lang BF. Mitochondrial evolution. Science 1999; 283: 1476–1481.CrossRefPubMedGoogle Scholar
- 13.Lowe CD, Day A, Kemp SJ, Montagnes DJS. There are high levels of functional and genetic diversity in Oxyrrhis marina. J. Eukaryot. Microbiol. 2005; 52: 250–257.PubMedGoogle Scholar
- 14.Guillard RRL. Culture of phytoplankton for feeding marine in vertebrates. In: Smith WL, Chanley WH (eds). Culture of Marine Invertebrates Animals. Plenum Press, New York, NY. 1975; 26–60.Google Scholar
- 15.Hara Y, Doi K, Chihara M. Four new species of Chattonella (Raphidophyceae, Chromophyta) from Japan. Jpn. J. Phycol. (Sorui) 1994; 42: 407–420.Google Scholar
- 16.Kamikawa R, Hosoi-Tanabe S, Nagai S, Itakura S, Sako Y. Development of a quantification assay for the cysts of the toxic dinoflagellate Alexandrium tamarense using real-time polymerase chain reaction. Fish. Sci. 2005; 71: 987–991.CrossRefGoogle Scholar
- 17.Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The ClustaIX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997; 25: 4876–4882.CrossRefPubMedGoogle Scholar
- 18.Swofford DI. Phylogenetic Analysis Using Parsimony (and Other Methods), Version 4, Signauer Associates, Sunderland, MA, 1998.Google Scholar
- 19.Posada D, Crandall KA. Modeltest: testing the model of DNA substitution. Bioinformatics 1998; 14: 817–818.CrossRefPubMedGoogle Scholar
- 20.Hasegawa M, Kishino H, Yano TA. Dating of the human ape splitting by a molecular clock of mitochondrial-DNA. J. Mol. Evol. 1985; 22: 160–174.CrossRefPubMedGoogle Scholar
- 21.Akase S, Yoshikawa T, Hayakawa N, Maeda H, Sakata T. Molecular identification of red tide-causing microalga Heterosigma akashiwo strains based on their chloroplast DNA sequences. Fish. Sci. 2004; 70: 1043–1050.CrossRefGoogle Scholar
- 22.Yoshida T, Nakai R, Seto H, Wang M, Iwataki M, Hiroishi S. Spacer region in dinoflagellate Heterocapsa species (Dinophyceae) and development of selective PCR primers for the bivalve killer Heterocapsa circularisquama. Microbes Environ. 2003; 18: 216–222.CrossRefGoogle Scholar