Advertisement

Fisheries Science

, Volume 72, Issue 6, pp 1200–1208 | Cite as

Phylogenetic analysis of noxious red tide flagellates Chattonella antiqua, C. marina, C. ovata, and C. verruculosa (Raphidophyceae) based on the rRNA gene family

  • Shoko Hosoi-Tanabe
  • Isamu Otake
  • Yoshihiko Sako
Article

Abstract

Four species of Chattonella, which are well known to form red tides that are lethal to fish, were subjected to phylogenetic analysis on the basis of the ribosomal RNA genes (rDNA), 5.8S rDNA, 18S rDNA, 28S rDNA, and the flanking internal transcribed spacers 1 and 2 (ITS1 and ITS2). The 18S rDNA sequences of C. antiqua, C. marina, and C. ovata isolated from different regions in Japan were compared. They were found to be identical with each other in a sequence 1818 bp long. The sequences of the D1/D2 region in the 28S rDNA, 5.8S rDNA, and ITS region that are known to be more variable regions were also found to be identical. These homogeneities of the rRNA gene family revealed the extremely close relatedness of C. antiqua, C. marina, and C. ovata. The sequences of C. verruculosa were different from those of these three species, resulting in an 89.2% homology in the 18S rDNA sequences, 70.4% homology in the D1/D2 region in the 28S rDNA sequences, and an 81.5% homology in 5.8S rDNA sequences and the ITS regions. Chattonella verruculosa was grouped within a single cluster composed of Dictyochophyceae rather than the other species of Raphidophyceae.

Key Words

Chattonella genetic homogeneity phylogenetic analysis Raphidophyceae rRNA gene family 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Okaichi T. Red tide problems in the Seto Inland Sea, Japan. In: Okaichi T, Anderson DM, Nemoto T (eds). Red Tides: Biology, Environmental Science, and Toxicology. Elsevier, New York, NY. 1989; 137–142.Google Scholar
  2. 2.
    Imai I. Current problems in classification and identification of marine raphidoflagellates (raphidophycean flagellates): from the view point of ecological study. Bull. Plankton Soc. Jpn 2000; 47: 55–64 (in Japanese with English abstract).Google Scholar
  3. 3.
    Tseng CK, Zhou MJ, Zou JZ. Toxic phytoplankton studies in China. In: Smayda TJ, Shimizu Y (eds). Toxic Phytoplankton Blooms in the Sea. Elsevier, Amsterdam. 1993; 87–93.Google Scholar
  4. 4.
    Odebrecht C, Abreu PC. Raphidophyceae in southern Brazil. Harmful Algae News 1995; 12/13: 4.Google Scholar
  5. 5.
    Vrieling EG, Koeman RPT, Nagasaki K, Ishida Y, Peperzak L, Gieskes WWC, Veenhuis M. Chattonella and Fibrocapsa (Raphidophyceae): first observation of potentially harmful, red tide organisms in Dutch coastal waters. Neth. J. Sea. Res. 1995; 33: 183–191.CrossRefGoogle Scholar
  6. 6.
    Hallegraeff GM, Munday B, Baden D, Whitney PL. Chattonella marina (Raphidophyte) bloom associated with mortality of cultured bluefin tuna (Thunnus maccoyii) in South Australia. In: Reguera B, Blanco J, Fernandez ML, Wyatt T (eds). Harmful Algae. Xunta de Galacia and IOC-UNESCO, Vigo. 1998; 93–96.Google Scholar
  7. 7.
    Imai I, Yamaguchi M, Matanabe M. Ecophysiology, life cycle, and bloom dynamics of Chattonella in the Seto of Japan. In: Anderson DM, Cembella AD, Hallegraeff GM (eds). Physiological Ecology of Harmful Algal Blooms. Springer-Verlag, Berlin. 1998; 95–112.Google Scholar
  8. 8.
    Tiffany MA, Barlow SB, Matey VE, Hurlbert SH. Chattonella marina (Raphidophyceae), a potentially toxic alga in the Salton Sea, California. Hydrobiologia 2001; 466: 187–194.CrossRefGoogle Scholar
  9. 9.
    Band-Schmidt CJ, Morquecho L, Hernández-Becerril DU, Reyes-Salinas A. Raphidophyceans on the coasts of Mexico. Hydrobiologia 2004; 515: 79–89.CrossRefGoogle Scholar
  10. 10.
    Hallegraeff GM, Hara Y. Taxonomy of harmful marine raphidophytes. In: Hallegraeff GM, Anderson DM, Cembella A (eds). Manual on Harmful Marine Microalgae. IOC UNESCO, Paris. 1995; 365–371.Google Scholar
  11. 11.
    Hara Y, Doi K, Chihara M. Four new species of Chattonella (Raphidophyceae, Chromophyta) from Japan. Jpn. J. Phycol. 1994; 42: 407–420.Google Scholar
  12. 12.
    Hara Y, Chihara M. Ultrastructure and taxonomy of Chattonella (Class Raphidophyceae) in Japan. Jpn. J. Phycol. 1982; 30: 47–56.Google Scholar
  13. 13.
    Scholin CA, Herzog M, Sogin M, Anderson DM. Identification of group and strain-specific genetic markers for globally distributed Alexandrium (Dinophyceae). II. Sequence analysis of a fragment of the LSU rRNA gene. J. Phycol. 1994; 30: 999–1011.CrossRefGoogle Scholar
  14. 14.
    Adachi M, Sako Y, Ishida Y. Restriction fragment length polymorphism of ribosomal DNA internal transcribed spacer and 5.8S regions in Japanese Alexandrium species (Dinophyceae). J. Phycol. 1996; 30: 857–863.CrossRefGoogle Scholar
  15. 15.
    Ben Ali A, De Baere R, De Wachter R, Van de Peer Y. Evolutionary relationships among heterokont algae (the autotrophic stramenopiles) based on combined analyses of small and large subunit ribosomal RNA. Protist 2002; 153: 123–132.PubMedCrossRefGoogle Scholar
  16. 16.
    Hosoi-Tanabe S, Sako Y. Rapid detection of natural cells of Alexandrium tamarense and A. catenella (Dinophyceae) by fluorescence in situ hybridization. Harmful Algae 2005; 4: 319–328.CrossRefGoogle Scholar
  17. 17.
    Hosoi-Tanabe S, Sako Y. Development and application of fluorescence in situ hybridization (FISH) method for simple and rapid identification of the toxic dinoflagellates Alexandrium tamarense and Alexandrium catenella in cultured and natural seawater. Fish. Sci. 2006; 72: 77–82.CrossRefGoogle Scholar
  18. 18.
    Kamikawa R, Hosoi-Tanabe S, Nagai S, Itakura S, Sako Y. Development of a quantification assay for the cysts of the toxic dinoflagellate Alexandrium tamarense using real-time polymerase chain reaction. Fish. Sci. 2005; 71: 985–989.CrossRefGoogle Scholar
  19. 19.
    Connell L. Rapid identification of marine algae (Raphidophyceae) using three-primer PCR amplification of nuclear internal transcribed spacer (ITS) regions from fresh and archived material. Phycologia 2002; 41: 15–21.CrossRefGoogle Scholar
  20. 20.
    Chen LCM, Edelstein T, McLachlan J. Bonnemaisonia hamifera Hariot in nature and in culture. J. Phycol. 1969; 5: 211–220.CrossRefGoogle Scholar
  21. 21.
    Hosoi-Tanabe S, Sako Y. Species-specific detection and quantification of the toxic marine dinoflagellates Alexandrium tamarense and A. catenella by real-time PCR assay. Mar. Biotechnol. 2005; 7: 506–514.PubMedCrossRefGoogle Scholar
  22. 22.
    Thompson JD, Higgins DG, Gibson TJ. Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic. Acids Res. 1994; 22: 4673–4680.PubMedCrossRefGoogle Scholar
  23. 23.
    Felsenstein J. PHYLIP-phylogenetic inference package (version 3.2). Cladistics. 1989; 5: 164–166.Google Scholar
  24. 24.
    Kimura M. A simple method for estimating evolutionary rates base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980; 16: 111–120.PubMedCrossRefGoogle Scholar
  25. 25.
    Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987; 4: 406–425.PubMedGoogle Scholar
  26. 26.
    Yamaguchi M, Imai I, Honjo T. Effects of temperature, salinity and irradiance on the growth rates of the noxious red tide flagellates Chattonella antiqua and C. marina (Raphidophyceae). Nippon Suisan Gakkaishi 1991; 57: 1277–1284.Google Scholar
  27. 27.
    Imai I, Itoh K. Annual cycle of Chattonella spp., causative flagellates of noxious red tides in the Inland Sea of Japan. Mar. Biol. 1987; 94: 287–292.CrossRefGoogle Scholar
  28. 28.
    Imai I, Itoh K. Cyst of Chattonella antiqua and C. marina (Raphidophyceae) in sediments of the Inland Sea of Japan. Bull. Plankton Soc. Jpn 1988; 35: 35–44.Google Scholar
  29. 29.
    Imai I. Cyst formation of the noxious red tide flagellate Chattonella marina (Raphidophyceae) in culture. Mar. Biol. 1989; 103: 235–239.CrossRefGoogle Scholar
  30. 30.
    Imai I, Itakura S, Itoh K. Life cycle strategies of the red tide causing flagellates Chattonella (Raphidophyceae) in the Seto Inland Sea. Mar. Poll. Bull. 1991; 23: 165–170.CrossRefGoogle Scholar
  31. 31.
    Yamaguchi M, Imai I. A microfluorometric analysis of nuclear DNA at different stages in the life history of Chattonella antiqua and Chattonella marina (Raphidophyceae). Phycologia 1994; 33: 163–170.Google Scholar

Copyright information

© The Japanese Society of Fisheries Science 2006

Authors and Affiliations

  • Shoko Hosoi-Tanabe
    • 1
  • Isamu Otake
    • 2
  • Yoshihiko Sako
    • 2
  1. 1.Research Center for Inland SeasKobe UniversityKobeJapan
  2. 2.Laboratory of Marine Microbiology, Division of Applied Biosciences, Graduate School of AgricultureKyoto UniversityKyotoJapan

Personalised recommendations