Advertisement

Fisheries Science

, Volume 72, Issue 4, pp 755–766 | Cite as

Use of live and dead probiotic cells in tilapia Oreochromis niloticus

  • Yousuke Taoka
  • Hiroto Maeda
  • Jae-Yoon Jo
  • Su-Mi Kim
  • Soo-Il Park
  • Takeshi Yoshikawa
  • Taizo Sakata
Article

Abstract

To investigate the effect of live and dead probiotic cells on the non-specific immune system of tilapia Oreochromis niloticus, probiotics were introduced by feeding either in the form of live or dead cells, or supplying live cells to the rearing water in a closed recirculating system. The probiotics treatment enhanced non-specific immune parameters such as lysozyme activity, migration of neutrophils and plasma bactericidal activity, resulting in improvement of resistance to Edwardsiella tarda infection. Especially, oral administration of live cells seemed to be more effective compared with other probiotic treatments such as oral administration of dead probiotic cells and supply of live probiotic cells to the rearing water. These results indicate that probiotics treatment is promising as an alternative method to antibiotics for disease prevention in aquaculture, and the viability of probiotic bacteria is a key factor to induce more potential effect of probiotics used for fish production.

Key Words

non-specific immune system Oreochromis niloticus probiotics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Miranda CD, Zemelman R. Bacterial resistance to oxytetracycline in Chilean salmon farming. Aquaculture 2002; 212: 31–47.CrossRefGoogle Scholar
  2. 2.
    Gerald DA, Jane EB. Effect of the normal microbial flora on the resistance of the small intestine to infection. J. Bacteriol. 1966; 92: 1604–1608.Google Scholar
  3. 3.
    Sugita H, Miyajima C, Deguchi Y. The vitamin B12-producting ability of intestinal bacteria isolated from tilapia and channel catfish. Nippon Suisan Gakkaishi 1990; 56: 701.Google Scholar
  4. 4.
    Austin B, Billaud AC. Inhibition of the fish pathogen, Serratia liquefaciens, antibiotic-producing isolate of Plancoccus recovered from seawater. J. Fish Dis. 1990; 13: 553–556.CrossRefGoogle Scholar
  5. 5.
    Gatescope FJ. The use of probiotics in aquaculture. Aquaculture 1999; 180: 147–165.CrossRefGoogle Scholar
  6. 6.
    Chabrillón M, Arijo S, Díaz-Rosales P, Balebona MC, Moriñigo MA. Interference of Listonella anguillarum with potential probiotic microorganisms isolated from farmed gilthead seabream (Sparus aurata, L.). Aquacult. Res. 2006; 37: 78–86.CrossRefGoogle Scholar
  7. 7.
    Robertson PAW, O’Dowd C, Burrells C, Williams P, Austin B. Use of Carnobacterium sp. as a probiotic for Atlantic salmon (Salmo salar L.) and rainbow trout (Oncorhynchus mykiss, Walbaum). Aquaculture 2000; 185: 235–243.CrossRefGoogle Scholar
  8. 8.
    Spanggaard B, Huber I, Nielsen J, Sick EB, Pipper CB, Martinussen T, Slielendrecht WJ, Gram L. The probiotic potential against vibriosis of the indigenous microflora of rainbow trout. Environ. Microbiol. 2001; 3: 755–765.PubMedCrossRefGoogle Scholar
  9. 9.
    Irianto A, Austin B. Probiotics in aquaculture. J. Fish Dis. 2002; 25: 633–642.CrossRefGoogle Scholar
  10. 10.
    Raida MK, Larsen JL, Nielsen ME, Buchmann K. Enhanced resistance of rainbow trout, Oncorhynchus mykiss (Walbaum), against Yersinia ruckeri challenge following oral administration of Bacillus subtilis and B. licheniformis (Bioplus2B). J. Fish Dis. 2003; 26: 495–498.PubMedCrossRefGoogle Scholar
  11. 11.
    Panigrahi A, Kiron V, Kobayashi T, Puangkaew J, Satoh S, Sugita H. Immune responses in rainbow trout Oncorhynchus mykiss induced by a potential probiotic bacteria Lactobacillus rhamnosus JCM 1136. Vet. Immunol. Immunopathol. 2004; 102: 379–388.PubMedCrossRefGoogle Scholar
  12. 12.
    Boyd CE. Chemistry and efficacy of amendments used to treat water and soil quality imbalances in shrimp ponds. In: Browdy CL, Hopkins JL (eds). World Aquaculture Society, Baton Rouge, LA. 1995; 183–189.Google Scholar
  13. 13.
    Boyd CE, Massaut L. Risks associated with the use of chemicals in pond aquaculture. Aquacul. Eng. 1999; 20: 113–132.CrossRefGoogle Scholar
  14. 14.
    Fuller R. Probiotics in man and animals. J. Appl. Bacteriol. 1989; 66: 365–378.PubMedGoogle Scholar
  15. 15.
    Verschuere L, Rombaut G, Sorgeloos P, Verstraete W. Probiotic bacteria as biological control agents. Microbiol. Mol. Biol. Rev. 2000; 64: 655–671.PubMedCrossRefGoogle Scholar
  16. 16.
    Yasuda K, Taga N. A mass culture method for Artemia salina using bacteria as food. Mer. 1980; 18: 53–62.Google Scholar
  17. 17.
    Fuller R. Probiotics for farm animals. In: Tannock GW (ed.). Probiotics: A Criteria Review. Horizon Scientific Press, Wymondham. 1999; 15–22.Google Scholar
  18. 18.
    Sanders ME, Veld JHJ. Bringing a probiotic-containing functional food to the market: microbiological, product, regulatory and labeling issues. Autonie Van Leeuwenhoek 1999; 76: 293–315.CrossRefGoogle Scholar
  19. 19.
    Dunne C, Murphy L, Flynn S, O’Mahony L, O’Halloran S, Feeney M, Morrissey D, Thornton G, Fitzgerald G, Daly C, Kiely B, Quigley EMM, O’Sullivan GC, Shanahan F, Kevin J. Probiotics from myth to reality. Demonstration of functionality in animal models of disease and in human clinical trials. Anton. Leeuw. Int. J. G. 1999; 76: 289–292.CrossRefGoogle Scholar
  20. 20.
    Rengpipat S, Phianphak W, Piyatiratitivorakul S, Menasveta P. Effects of a probiotic bacterium on black tiger shrimp Penaeus monodon survival and growth. Aquaculture 1998; 167: 301–313.CrossRefGoogle Scholar
  21. 21.
    Byun JW. Probiotic effect of Lactobacillus sp. Ds-12 in flounder. J. Gen. Appl. Microbiol. 1997; 43: 305–308.PubMedCrossRefGoogle Scholar
  22. 22.
    Rengpipat S, Rukpratanporn S, Piyatiratitivorakul S, Menasveta P. Immunity enhancement in black tiger shrimp (Penaeus monodon) by a probiont bacterium (Bacillus S11). Aquaculture 2000; 191: 271–288.CrossRefGoogle Scholar
  23. 23.
    Queiroz JF, Boyd CE. Effects of a bacterial inoculum in channel catfish ponds. J. Aquacult. Trop. 1998; 29: 67–73.Google Scholar
  24. 24.
    Prabu NM, Nazar AR, Rajagopal S, Khan SA. Use of probiotics in water quality management during shrimp culture. J. Aquacult. Trop 1999; 14: 227–236.Google Scholar
  25. 25.
    Corre V Jr, Janeo RJ, Caipang AMA. Use of probiotics, reservoir with green water in shrimp farming in the Philippines. Jpn. Soc. Promot. Sci. 2001; 30: 67–72.Google Scholar
  26. 26.
    Moriarty DJW. Control of luminous Vibrio species in penaeid aquaculture pond. Aquaculture 1998; 164: 351–358.CrossRefGoogle Scholar
  27. 27.
    Jory DE. Use of probiotics in penaeid shrimp growout. Aquacult. Mag. 1998; 24: 62–67.Google Scholar
  28. 28.
    Skjermo J, Vadstein O. Techniques for microbial control in the intensive rearing of marine larvae. Aquaculture 1999; 177: 333–343.CrossRefGoogle Scholar
  29. 29.
    Wang YB, Xu ZR, Xia MS. The effectiveness of commercial probiotics in northern white shrimp Penaeus vannamei ponds. Fish. Sci. 2005; 71: 1036–1041.CrossRefGoogle Scholar
  30. 30.
    Vaseeharan B, Ramasamy P. Control of Pathogenic Vibrio spp. by Bacillus subtilis BT23, a possible probiotic treatment for black tiger shrimp Penaeus monodon. Lett. Appl. Microbiol. 2003; 36: 83–97.PubMedCrossRefGoogle Scholar
  31. 31.
    Gullian M, Thompson F, Rodriguez J. Selection of probiotic bacteria and study of their immunostimulatory effect in Penaeus vannamei. Aquaculture 2004; 223: 1–14.CrossRefGoogle Scholar
  32. 32.
    Ziaei-Nejad S, Rezaei MH, Takami GA, Lovett GL, Mirvaghefi AR, Shakouri M. The effect of Bacillus spp. bacteria used as probiotics on digestive enzyme activity, survival and growth in the Indian white shrimp Fenneropenaeus indicus. Aquaculture 2006; 252: 516–524.CrossRefGoogle Scholar
  33. 33.
    Murosaki S, Yamamoto Y, Ito K, Inokuchi T, Kusaka H, Ikeda H, Yoshikai Y. Heat-killed Lactobacillus plantarum L-137 suppresses naturally fed antigen-specific IgE production by stimulation of IL-12 production in mice. J. Allergy Clin. Immunol. 1998; 102: 57–64.PubMedCrossRefGoogle Scholar
  34. 34.
    Villamil L, Figueras A, Novoa B. Immunomodulatory effects of nisin in turbot (Scophthalmus maximus L.). Fish Shellfish Immunol. 2003; 14: 157–169.PubMedCrossRefGoogle Scholar
  35. 35.
    Irianto A, Austin B. Use of dead probiotic cells to control furunculosis in rainbow trout, Oncorhynchus mykiss (Walbaum). J. Fish Dis. 2003; 56: 59–62.CrossRefGoogle Scholar
  36. 36.
    Aranishi F, Nakane M. Epidermal protease of the Japanese eel. Fish Physiol. Biochem. 1997; 16: 471–478.CrossRefGoogle Scholar
  37. 37.
    Takahashi Y, Itami T, Konegawa K. Enzymatic properties of partially lysozyme from the skin mucus of carp. Nippon Suisan Gakkaishi 1986; 52: 1209–1214.Google Scholar
  38. 38.
    Caruso D, Schlumberger O, Dahm C, Proteau JP. Plasma lysozyme levels in sheatfish Silurus glanis (L.) subjected to stress and experimental infection with Edwardsiella tarda. Aquacult. Res. 2002; 33: 999–1008.CrossRefGoogle Scholar
  39. 39.
    Okada Y, Klein NJ, Pierro J. Neutrophil dysfunction: the cellular mechanisms of impaired immunity during total parenteral nutrition in infancy. J. Pediatr. Surg. 1999; 34: 242–245.PubMedCrossRefGoogle Scholar
  40. 40.
    Rook GAW, Steele J, Umar S, Dockrell HM. A simple method for the solubilisation of reduced NBT, and its use as a colorimetric assay for activation of human macrophages by γ-interferon. J. Immunol. Methods 1985; 82: 161–167.PubMedCrossRefGoogle Scholar
  41. 41.
    Endo M, Arunlertaree C, Ruangpan L, Ponpornpisit A, Yoshida T, Iida T. A new method for collecting neutrophils using swim bladder. Fish. Sci. 1997; 63: 644–645.Google Scholar
  42. 42.
    Konagaya S. Jellification and protease activity of Yellow fin sole muscle in association with a myxosporidian parasite. Nippon Suisan Gakkaishi 1980; 46: 1019–1026.Google Scholar
  43. 43.
    Lowry OH, Roseburough NJ, Fan AC, Rondall RT. Protein measurement with the folin phenol solution. J. Biol. Chem. 1951; 193: 265–275.PubMedGoogle Scholar
  44. 44.
    Strickland J, Parsons TA. Practical hand book of seawater analysis. Bull. Fish. Res. Ed. Can. 1972; 167: 1–311.Google Scholar
  45. 45.
    Alexander JB, Ingram GA. Noncellular nonspecific defense mechanisms of fish. Annu. Rev. Fish Dis. 1992; 2: 249–280.CrossRefGoogle Scholar
  46. 46.
    Ellis AE. Lysozyme assays. In: Stolen JS, Fletcher TC, Anderson DP, Robertson BS, van Muiswinkle WB (eds). Techniques in Fish Immunology. SOS Publications, Fair Haven, NJ. 1990; 101–103.Google Scholar
  47. 47.
    Grinde B. Lysozyme from rainbow trout Salmo gairdneri Richardson as an anti bacterial agent against fish pathogens. J. Fish Dis. 1989; 12: 207–210.CrossRefGoogle Scholar
  48. 48.
    Mock A, Peters GS. Lysozyme activity in rainbow trout Oncorhynchus mykiss (Walbaum) stressed by handling transport and water pollution. J. Fish Biol. 1990; 37: 873–885.CrossRefGoogle Scholar
  49. 49.
    Caruso D, Lazard J. Subordination stress in Nile tilapia and its effect on plasma lysozyme activity. J. Fish Biol. 1999; 55: 451–454.CrossRefGoogle Scholar
  50. 50.
    Aranishi F. Possible role for cathepsins B and L in bacteriolysis by Japanese eel skin. Fish Shellfish Immunol. 1999; 8: 61–64.CrossRefGoogle Scholar
  51. 51.
    Aranishi F, Mano N. Antibacterial cathepsins in different types of ambicoloured Japanese flounder skin. Fish Shellfish Immunol. 2000; 10: 87–89.PubMedCrossRefGoogle Scholar
  52. 52.
    Panigrahi A, Kiron V, Puangkaew J, Kobayashi T, Satoh S, Sugita H. The viability of probiotic bacteria in rainbow trout Oncorhynchus mykiss. Aquaculture 2005; 243: 241–254.CrossRefGoogle Scholar
  53. 53.
    Secombes CJ, Hardie LJ, Daniels G. Cytokines in fish: an update. Fish Shellfish Immunol. 1996; 6: 291–304.CrossRefGoogle Scholar
  54. 54.
    Nikoskelainen S, Ouwehand A, Salminen S, Bylund G. Protection of rainbow trout (Oncorhynchus mykiss) from furunculosis by Lactobacillus rhamnosus. Aquaculture 2001; 198: 229–236.CrossRefGoogle Scholar
  55. 55.
    Riquelme C, Araya R, Nelson V, Rojas A, Guaita M, Candia M. Potential probiotic strains in the culture of the Chilean scallop Argopecten purratus (Lamarck, 1819). Aquaculture 1997; 154: 17–26.CrossRefGoogle Scholar
  56. 56.
    Gildberg A, Mikkelsen H. Effects of supplementing the feed to Atlantic cod (Gadus morhua) fry with lactic acid bacteria and immuno-stimulating peptides during a challenge trial with Vibrio anguillarum. Aquaculture 1998; 167: 103–113.CrossRefGoogle Scholar
  57. 57.
    De Simone C, Bianchi Salvadori B, Negri R, Ferrazzi M, Baldinelli L, Vesely R. The adjuvant effect of yogurt on production of γ-interferon by Con A-stimulated human peropheral blood lymphocytes. Nutr. Rep. Int. 1986; 33: 419–433.Google Scholar
  58. 58.
    Salinas I, Cuesta A, Esteban MÁ, Meseguer J. Dietary administration of Lactobacillus delbrüeckii ssp. lactis and Bacillus subtilis, single or combined, on gilthead seabream cellular innate immune responses. Fish Shellfish Immunol. 2005; 19: 67–77.PubMedCrossRefGoogle Scholar
  59. 59.
    Seo G, Shimuzu K, Sasatsu M, Kono M. Inhibition of growth of some enteropathogenic strains in mixed cultures of Streptococcus faecalis and Clostridium butyricum. Microbios Lett. 1989; 40: 151–160.Google Scholar
  60. 60.
    Iino H, Fukaya K, Hirasawa Y. Stimulation of bacterial growth of some strains of Bifidobacterium by a crude preparation of metabolites from Bacillus mesentericus TO-A. Biomed. Lett. 1993; 48: 73–78.Google Scholar
  61. 61.
    Seo G, Akimoto Y, Hamashima H. A new factor from Bacillus mesentericus which promotes the growth of Bifidobacterium. Microbios 2000; 101: 105–114.PubMedGoogle Scholar
  62. 62.
    Rafter J. Probiotics and colon cancer. Best Pract. Res. Clin. Gastroenterol. 2003; 17: 849–859.PubMedCrossRefGoogle Scholar
  63. 63.
    Vázquez JA, Gonzalez MP, Murado MA. Effects of lactic acid bacteria cultures on pathogenic microbiota from fish. Aquaculture 2005; 245: 149–161.CrossRefGoogle Scholar
  64. 64.
    Gram L, Melchiorsen J, Spanggaard B, Huber I, Nielsen FT. Inhibition of Vibrio anguillarum by Psuedomonas fluorescens AH2, a possible treatment of fish. Appl. Environ. Microbiol. 1999; 65: 969–973.PubMedGoogle Scholar
  65. 65.
    Jöborn A, Olsson JC, Westerdahl A, Conway PL, Kjelleberg S. Colonization in the fish intestinal tract and production of inhibitory substances in intestinal mucus and faecal extracts by Carnobacterium sp. strain K1. J. Fish Dis. 1997; 20: 383–392.CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Fisheries Science 2006

Authors and Affiliations

  • Yousuke Taoka
    • 1
  • Hiroto Maeda
    • 2
  • Jae-Yoon Jo
    • 3
  • Su-Mi Kim
    • 4
  • Soo-Il Park
    • 5
  • Takeshi Yoshikawa
    • 6
  • Taizo Sakata
    • 6
  1. 1.United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
  2. 2.Laboratory of Marine Microbiology, Faculty of BioresourcesMie UniversityTsuJapan
  3. 3.Department of AquaculturePukyong National UniversityBusanKorea
  4. 4.Institute of Fisheries SciencePukyong National UniversityBusanKorea
  5. 5.Department of Aquatic Life MedicinePukyong National UniversityBusanKorea
  6. 6.Laboratory of Microbiology, Faculty of FisheriesKagoshima UniversityKagoshimaJapan

Personalised recommendations