Fisheries Science

, Volume 72, Issue 1, pp 149–156

Thermal adaptation of pacific bluefin tuna Thunnus orientalis to temperate waters

  • Takashi Kitagawa
  • Shingo Kimura
  • Hideaki Nakata
  • Harumi Yamada
Article

Abstract

Immature Pacific bluefin tuna Thunnus orientalis, tagged with archival tags, were released near Tsushima Island in the East China Sea during the winters of 1995 through 1998. Time-series data for ambient and peritoneal cavity temperatures, recorded every 128 or 256 s for 23 fish recovered, were analyzed. The objective of this study was to clarify the process of development of thermoconservation ability with growth in relation to adaptive mechanisms to cooler temperate waters. According to the results, mean ambient temperatures ranged from 14.9 to 20.7°C, which is almost within the optimum temperature range according to previous reports. Mean peritoneal temperatures were higher than ambient temperatures (19.7–27.3°C), but never reached 35°C, which would induce overheating. Although the mean thermal differences between peritoneal and ambient temperatures increased with body size, the rate of increase decreased with body size. A heat budget model suggests that as the insulation of the body develops, the estimated mean values of internal heat production decrease with body size. This is probably due to the allometric scale effect and explains why the thermal difference does not increase quickly with body size. It is likely that Pacific bluefin tuna inhabit cooler temperate waters in mid-latitude regions to avoid overheating.

Key words

archival tag bluefin tuna internal heat production thermal adaptation wholebody heat-transfer coefficient 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kishinoue K. Contributing to the comparative study of the so-called scombrid fishes. J. College Agric. Imperial Univ. Tokyo 1923; 8: 294–475.Google Scholar
  2. 2.
    Barrett I, Hester FJ. Body temperature of yellowfin and skipjack tunas in relation to sea surface temperature. Nature 1964; 203: 96–97.CrossRefPubMedGoogle Scholar
  3. 3.
    Carey FG, Teal JM, Kanwisher JW, Lawson KD. Warmbodied fish. Am. Zool. 1971; 11: 137–143.Google Scholar
  4. 4.
    Carey FG. Fishes with warm bodies. Sci. Am. 1973; 228: 36–44.PubMedCrossRefGoogle Scholar
  5. 5.
    Stevens ED, Lam HM, Kendall J. Vascular anatomy of the counter-current heat exchanger of skipjack tuna. J. Exp. Biol. 1974; 61: 145–153.PubMedGoogle Scholar
  6. 6.
    Stevens ED, Kanwisher JW, Carey FG. Muscle temperature in free-swimming giant Atlantic bluefin tuna (Thunnus thynnus L.). J. Therm Biol. 2000; 25: 419–423.CrossRefPubMedGoogle Scholar
  7. 7.
    Carey FG, Teal JM. Regulation of body temperature by the bluefin tuna. Comp. Biochem. Physiol. 1969; 28: 205–213.CrossRefPubMedGoogle Scholar
  8. 8.
    Graham JB, Dickson K. Tuna comparative physiology. J. Exp. Biol. 2004; 207: 4015–4024.CrossRefPubMedGoogle Scholar
  9. 9.
    Orange CJ, Fink BD. Migration of a tagged bluefin tuna across the Pacific Ocean. Calif. Fish Game 1963; 49: 307–309.Google Scholar
  10. 10.
    Clemens AE, Flitter GA. Bluefin tuna migrate across the Pacific Ocean. Calif. Fish Game 1969; 55: 132–135.Google Scholar
  11. 11.
    Bayliff WH. Synopsis of biological data on the northern bluefin tuna, Thunnus thynnus (Linnaeus, 1758), in the Pacific Ocean. IATTC Sci. Rep. 1980; 2: 261–293.Google Scholar
  12. 12.
    Neill WH, Chang RKC, Dizon AE. Magnitude and ecological implications of thermal inertia in skipjack tuna, Katsuwonus pelamis (Linnaeus). Environ. Biol. Fish. 1976; 1: 61–80.CrossRefGoogle Scholar
  13. 13.
    Holland KN, Brill RW, Chang RKC. Horizontal and vertical movements of yellowfin and bigeye tuna associated with fish aggregating devices. Fish. Bull. (Wash. D.C.) 1990; 88: 493–507.Google Scholar
  14. 14.
    Holland KH, Brill RW, Chang RKC. Sibert JR, Fournier DA. Physiological and behavioural thermoregulation in bigeye tuna. Nature 1992; 358: 410–412.CrossRefPubMedGoogle Scholar
  15. 15.
    Holland KH, Sibert JR. Physiological thermoregulation in bigeye tuna. Thunnus Obesus. Environ. Biol. Fish. 1994; 40: 319–327.CrossRefGoogle Scholar
  16. 16.
    Brill RW. A review of temperature and oxygen tolerance studies of tunas pertinent to fisheries oceanography, movement models and stock assessments. Fish. Oceanogr. 1994 3: 204–216.CrossRefGoogle Scholar
  17. 17.
    Brill RW, Dewar H, Graham JB. Basic concepts relevant to heat transfer in fishes, and their use in measuring the physiological thermoregulatory abilities of tunas. Environ. Biol. Fish. 1994; 40: 109–124.CrossRefGoogle Scholar
  18. 18.
    Marcinek DJ, Blackwell SB, Dewar H, Freund EV, Farwell C, Dau D, Seitz AC, Block BA. Depth and muscle temperature of Pacific bluefin tuna examined with acoustic and pop-up satellite archival tag. Mar. Biol. 2001; 138: 869–885.CrossRefGoogle Scholar
  19. 19.
    Dewar H, Graham JB, Brill RW. Studies of tropical tuna swimming performance in a large water tunnel. II. Thermoregulation. J. Exp. Biol. 1994; 192: 33–44.PubMedGoogle Scholar
  20. 20.
    Kitagawa T, Nakata H, Kimura S, Itoh T, Tsuji S, Nitta A. Effect of ambient temperature on the vertical distribution and movement of Pacific bluefin tuna (Thynnus thynnus orientalis). Mar. Ecol. Prog. Ser. 2000; 206: 251–260.CrossRefGoogle Scholar
  21. 21.
    Kitagawa T, Nakata H, Kimura S, Tsuji S. Thermoconservation mechanism inferred from peritoneal cavity temperature recorded in free swimming Pacific bluefin tuna (Thunnus thynnus orientalis). Mar. Ecol. Prog. Ser. 2001; 220: 253–263.CrossRefGoogle Scholar
  22. 22.
    Block BA, Dewar H, Williams T, Prince ED, Farwell C, Fudge D. Archival tagging of Atlantic bluefin tuna (Thunnus thynnus thynnus). Mar. Technol. Soc. J. 1998; 32: 37–46.Google Scholar
  23. 23.
    Yukinawa M, Yabuta Y. Age and growth of bluefin tuna, Thunnus thynnus (Linnaeus), in the north Pacific Ocean. Rep. Nankai Reg. Fish. Res. Lab. 1967; 25: 1–18.Google Scholar
  24. 24.
    Itoh T, Tsuji S, Nitta A. Migration of young bluefin tuna Thunnus orientalis observed with archival tags. Fish. Bull. (Wash. D.C.) 2003; 101: 514–534.Google Scholar
  25. 25.
    Kitagawa T, Nakata H, Kimura S, Yamada H, Diving behavior of immature, feeding Pacific bluefin tuna (Thunnas thynnus orientalis) in relation to season and area: the East China Sea and the Kuroshio-Oyashio transition region. Fish. Oceanogr. 2004; 13: 161–180.CrossRefGoogle Scholar
  26. 26.
    Neill WH, Stevens, ED. Thermal inertia versus thermoregulation in ‘warm’ turtles and tuna. Science 1974; 184: 1008–1010.CrossRefPubMedGoogle Scholar
  27. 27.
    Kitagawa T, Nakata H, Kimura S, Sugimoto T, Yamada H. Differences in vertical distribution and movement of Pacific bluefin tuna (Thunnus thynnus orientalis) among areas: the East China Sea, the Sea of Japan and the western North Pacific. Mar. Freshwater Res. 2002; 52: 245–252.CrossRefGoogle Scholar
  28. 28.
    Kitagawa T, Nakata H, Kimura S, Yamada H. Diving behavior of immature Pacific bluefin tuna (Thunnus thynnus orientalis) recorded by an archival tag. Fish. Sci. 2002; 68 (Suppl. 1): 427–428.Google Scholar
  29. 29.
    Uda M.. A consideration on the long years trend of the fisheries fluctuation in relation to sea condition. Bull. Jpn. Soc. Sci. Fish. 1957; 23: 368–372.Google Scholar
  30. 30.
    Schmidt-Nielsen K. Animal Physiology: Adaptation and Environment. Cambridge University Press, Cambridge. 1991.Google Scholar
  31. 31.
    Korsmeyer KE, Brill RW. Active regulation of brain temperature in yellowfin tuna. Physiologist 2002; 45: 352–352.Google Scholar
  32. 32.
    Paladino FV, O’Connor MP, Spotila JR. Metabolism of leatherback turtles, gigantothermy, and thermoregulation of dinosaurs. Nature 1992; 344: 858–860.CrossRefGoogle Scholar
  33. 33.
    Schmidt-Nielsen K. Scaling. Why Is Animal Size So Important? Cambridge University Press, Cambridge. 1984.Google Scholar
  34. 34.
    Funakoshi S, Wada K, Suzuki T. Development of the rete mirabile with growth and muscle temperature in the young bluefin tuna. Bull. Jpn. Soc. Sci. Fish. 1985; 51: 1971–1975.Google Scholar
  35. 35.
    Kleiber M. The Fire of Life. An Introduction to Animal Energetics. Wiley, New York, 1961.Google Scholar
  36. 36.
    Peters RH. The Ecological Implications of Body Size. Cambridge University Press, Cambridge, 1983.Google Scholar
  37. 37.
    Fry FEJ. The Aquatic Respiration of Fish. Academic Press, New York. 1957.Google Scholar
  38. 38.
    Gibbs RH, Collette BB. Comparative anatomy and systematics of the tunas, genus Thunnus. Fish. Bull. U.S. Fish. Wild Serv. 1967; 66: 65–130.Google Scholar
  39. 39.
    Collette BB. Adaptations and systematics of the mackerels and tunas. In: Sharp GD, Dizon AE (eds). The Physiological Ecology of Tunas. Academic Press, New York, 1978; 7–40.Google Scholar
  40. 40.
    Yabe H, Ueyanagi S, Watanabe H. Studies on the life history of bluefin tuna Thunnus thynnus and on the larva of the southern bluefin tuna T. maccoyii. Rep. Nankai Reg. Fish. Res. Lab. 1966; 23: 125–135.Google Scholar
  41. 41.
    Fisheries Agency of Japan and National Research Institute of Far Seas Fisheries. Report on 2002 Research Cruise of the R/V Shoyo-Maru, 2002.Google Scholar
  42. 42.
    Teo SLH, Walli, A, Boustany A, Stokesbury MJW, Blackwell S. Farwell CJ, Weng KC, Dewar H, Williams TD, Block BA. Movement patterns, diving behaviour and thermal biology of Atlantic bluefin tuna on their spawning grounds. 2nd International Bio-logging Science Symposium: 13–16 June 2005, University of St Andrews, Scotland, UK.Google Scholar
  43. 43.
    Graham JB, Dickson KA. Anatomical and physiological specializations for endothermy. In: Block BA, Stevens ED (eds). Tuna: Physiology, Ecology, and Evolution, Academic Press, San Diego, CA, USA. 2001; 121–168.CrossRefGoogle Scholar
  44. 44.
    Nakamura H. Tuna Distribution and Migration. Fishing News, London. 1969.Google Scholar

Copyright information

© The Japanese Society of Fisheries Science 2006

Authors and Affiliations

  • Takashi Kitagawa
    • 1
  • Shingo Kimura
    • 1
  • Hideaki Nakata
    • 2
  • Harumi Yamada
    • 3
  1. 1.Ocean Research InstituteUniversity of TokyoNakano, TokyoJapan
  2. 2.Faculty of FisheriesNagasaki UniversityNagasakiJapan
  3. 3.National Research Institute of Far Seas FisheriesFisheries Research AgencyShizuokaJapan

Personalised recommendations