Advertisement

Fisheries Science

, Volume 71, Issue 4, pp 754–766 | Cite as

Genetic difference between Ezo-awabi Haliotis discus hannai and Kuro-awabi H. discus discus populations: Microsatellite-based population analysis in Japanese abalone

  • Motoyuki HaraEmail author
  • Masashi Sekino
Article

Abstract

This study documents the genetic population relationships between Ezo-awabi Haliotis discus hannai and Kuro-awabi H. discus discus by means of the microsatellite technique with an emphasis on the extent of genetic difference between Ezo-and Kuro-awabi populations. Eight markers were employed to screen five populations each collected from Ezo-and Kuro-awabi habitats. All eight loci showed polymorphisms in all populations (number of alleles per locus, 11.1–14.1; averaged expected heterozygosity, 0.64–0.70). The number of loci that yielded significant genetic heterogeneities (allele frequency distribution and/or pairwise θ) between Ezo- and Kuro-awabi populations was larger than that generated in comparisons between populations within Ezo- and Kuro-awabi habitats. According to the bootstrap neighbor-joining trees constructed on the basis of two genetic distance measures (D A and D ST), the 10 populations fell into two clusters of populations (Ezo-awabi and Kuro-awabi habitat groups), and the results of hierarchical AMOVA testing also supported the neighborjoining clustering. The outcomes presented here suggest that the microsatellite markers used in this study are potentially an efficient means to differentiate Ezo- and Kuro-awabi populations.

Key words

genetic relationship Haliotis discus discus Haliotis discus hannai Japanese abalone microsatellite DNA population genetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Frankham R, Ballou JD, Briscoe DA. Introduction to Conservation Genetics. Cambridge University Press, Cambridge, UK. 2002.Google Scholar
  2. 2.
    Lande R. Extinction risks from anthropogenic, ecological, and genetic factors. In: Landweber LF, Dobson AP (eds). Genetics and the Extinction of Species. Princeton University Press, Princeton, NJ, 1999; 1–22.Google Scholar
  3. 3.
    Sakai S, Ino T. Biological studies on abalones. In: Ino T, Imai T (eds). Complete Mariculture. Koseisha-Koseikaku, Tokyo. 1971; 265–274.Google Scholar
  4. 4.
    Ino T. Biological study on the propagation of Japanese abalone (genus Haliotis). Bull. Tokai Reg. Fish. Res. Lab. 1952; 5: 1–102.Google Scholar
  5. 5.
    Kobayashi M, Kijima A, Fujio Y. Geographic cline of quantitative traits in abalone around the coast of Japan. Fish Genet. Breed. Sci. 1992; 17: 39–48.Google Scholar
  6. 6.
    Fujio Y, Oniwa K, Yuzawa A, Takahashi K. Genetic variability and population structure in abalone. In: Japan Fisheries Resource Conversation Association (ed). Genetic Assessment Project Report in 1985–1988. Japan Fisheries Resource Conversation Association. Tokyo, 1989; 459–476.Google Scholar
  7. 7.
    Hara M, Fujio Y. Geographic distribution of isozyme genes in natural abalone. Bull. Tohoku Nat. Fish. Res. Inst. 1992; 54: 115–124 (in Japanese with English abstract).Google Scholar
  8. 8.
    Kijima A, Ikeda M, Fujio Y. Genetic characteristic of the artificial seed populations of abalone. FISH Fish Genet. Breed. Sci. 1992; 18: 53–63 (in Japanese).Google Scholar
  9. 9.
    Naganuma T, Hisadome K, Shiraishi K, Kojima H. Molecular distinction of two resemble abalones, Haliotis discus discus and Haliotis discus hannai by 18S rDNA sequences. J. Mar. Biotechnol. 1998; 6: 59–61.Google Scholar
  10. 10.
    Sambrook J, Fritsch EF, Manitaris T. Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory Press, Plainview, NY, 1989.Google Scholar
  11. 11.
    Sekino M, Hara M. Microsatellites DNA loci in Japanese abalone Haliotis discus discus (Mollusca, Gastropoda, Haliotidae). Mol. Ecol. Note 2001; 1: 8–10.CrossRefGoogle Scholar
  12. 12.
    Nei M. Molecular Evolutionary Genetics. Columbia University Press, New York. 1987.Google Scholar
  13. 13.
    Marshall TC, Slate J, Kruuk LEB, Pemberton JM. Statistical confidence for likelihood-based paternity inference in natural populations. Mol. Ecol. 1998; 7: 639–655.PubMedCrossRefGoogle Scholar
  14. 14.
    Kimura M, Crow JF. the number of alleles that can be maintained in a finite population. Genetics 1964; 49: 725–738PubMedGoogle Scholar
  15. 15.
    Summers K, Amos W. Behavioral, ecological and molecular genetic analyses of reproductive strategies in the Amazonian dart-poison frog, Dendrobates ventrimaculatus. Behav. Ecol. 1997; 8: 260–267.CrossRefGoogle Scholar
  16. 16.
    Schneider S, Kueffer JM, Roessli D, Excoffier L. ARLEQUIN Version 1.1: A Software for Population Genetic Data Analysis. Genetics and Biometry Laboratory, Univ. of Geneva, Switzerland. 1997.Google Scholar
  17. 17.
    Dempster A, Laird N, Rubin D. Maximum likelihood estimation from incomplete data via the EM algorithm. J. Roy. Statist. Soc. 1997; 39: 1–38.Google Scholar
  18. 18.
    Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution 1984; 38: 1358–1370.CrossRefGoogle Scholar
  19. 19.
    Excoffier L, Smouse P, Quattro J. Analysis of molecular variance inferred from metric distances among DNA haplotype: application to human mitochondrial DNA restriction data. Genetics 1992; 131: 479–491.PubMedGoogle Scholar
  20. 20.
    Rice WR. Analyzing table of statistical tests. Evolution 1989; 43: 223–225.CrossRefGoogle Scholar
  21. 21.
    Saito N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic tree. Mol. Biol. Evol. 1987; 4: 406–425.Google Scholar
  22. 22.
    Nei M, Tajima F, Tateno Y. Accuracy of estimated phylogenetic tree from molecular data, II: gene frequency data. J. Mol. Evol. 1983; 19: 153–170.PubMedCrossRefGoogle Scholar
  23. 23.
    Nei M. Genetic distance between populations. Am. Nat. 1972; 106: 283–292.CrossRefGoogle Scholar
  24. 24.
    Page RDM. Treeview: an application to display phylogenetic tree on personal computers. Comp. Appl. Bio. Sci. 1996; 12: 357–358.Google Scholar
  25. 25.
    Fujio Y, Yamanaka R, Smith PJ. Genetic variation in marine mollusks. Nippon Suisan Gakkaishi 1983; 49: 1809–1817.Google Scholar
  26. 26.
    Gaffney PM, Scott TM. Genetic heterozygosity and production traits in natural and hatchery populations of bivalves. Aquaculture 1984; 42: 289–302.CrossRefGoogle Scholar
  27. 27.
    Fujio Y, Yuzawa A, Kikuchi S, Koganezawa A. Genetic study on the population structure of abalone. Bull. Tohoku Reg. Fish. Res. Lab. 1986; 48: 59–65.Google Scholar
  28. 28.
    Hedgecock IWH. Does variance in reproductive success limit effective population size of marine organisms? In: Beaumont AR (ed). Genetics and Evolution of Aquatic Organisms. Chapman & Hall, London, 1994; 122–134.Google Scholar
  29. 29.
    Momoyama K, Nakatsugawa T, Yurano N. Mass mortalities of juvenile abalone, Haliotis spp., caused by amyotrophia. Pathology 1999; 34: 7–14.Google Scholar

Copyright information

© The Japanese Society of Fisheries Science 2005

Authors and Affiliations

  1. 1.National Research Institute of AquacultureMieJapan
  2. 2.Tohoku National Fisheries Research InstituteShiogama, MiyagiJapan

Personalised recommendations