Ecological Research

, Volume 19, Issue 2, pp 141–148 | Cite as

Proximate mechanisms and evolution of caste polyphenism in social insects: From sociality to genes

Special Submission from the Winner of the 7th Denzaburo Miyadi Award

Evidence has accumulated over several decades to prove the kin selection theory of evolution of social insects, however, proximate mechanisms of social behavior, and/or caste differentiation remain obscure. Genes that regulate these mechanisms are apparently selected through kin selection, and organisms have consequently acquired sociality. Here, I will discuss several studies that were performed recently by Matsumoto Laboratory, University of Tokyo, Tokyo, Japan, in various social insects, such as termites and ants, in order to reveal the regulatory mechanisms of social behavior and the evolutionary processes of sociality. First, I will review the foraging behavior of the black marching termite Hospitalitermes medioflavus, where well-organized task allocation among castes is apparent. This suggests that regulation of postembryonic development is important in social behavior. Next, I will summarize recent progress in identifying caste-specific gene expression in the damp-wood termite Hodotermopsis sjostedti. This constitutes the basis for molecular mechanisms of caste differentiation, and moreover, the genes identified might be good markers for social evolution. Finally, the mechanism underlying winglessness in ant workers is reviewed. Apoptotic cell death was detected at the stage of pupation in wingless worker castes. Furthermore, the areas of study recently designated as ‘sociogenomics’ and ‘ecological developmental biology’ are discussed.

Key words

caste differentiation ecological developmental biology polyphenism social behavior sociogenomics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abouheif E. & Wray G. A. (2002) Evolution of the gene network underlying wing polyphenism in ants. Science 297: 249–252.CrossRefGoogle Scholar
  2. Dewitz H. (1878) Beiträge zur postembryonalen Giliedmassenbildung bei den Insekten. Zeitschrift für Wissenschaftliche Zoologie 30: 78–105 (in German).Google Scholar
  3. Gilbert S. F. (2000) Developmental Biology, 6th edn. Sinauer Associates, Massachusetts.Google Scholar
  4. Gilbert S. F. (2001) Ecological developmental biology: Developmental biology meets the real world. Developmental Biology 233: 1–12.Google Scholar
  5. Gilbert S. F. & Bolker J. A. (2003) Ecological developmental biology: preface to the symposium. Evolution and Development 5: 3–8.Google Scholar
  6. Grassé P. P. & Noirot C. (1947) Le polymorphisme social du termite à cou jaune (Calotermes flavicollis F.). Les faux-ouvriers ou pseudergates et les mues régressives. Comptes Rendus de l’Académie Des Sciences 224: 219–221 (in French).Google Scholar
  7. Hamilton W. D. (1964) The genetical evolution of social behaviour, I, II. Journal of Theoretical Biology 7: 1–52.Google Scholar
  8. Howard R. & Haverty M. I. (1979) Termites and juvenile hormone analogues: a review of methodology and observed effects. Sociobiology 4: 269–278.Google Scholar
  9. Koshikawa S., Matsumoto T. & Miura T. (2002) Morphometric changes during soldier differentiation of the damp-wood termite Hodotermopsis japonica (Isoptera: Termopsidae). Insectes Sociaux 49: 245–250.Google Scholar
  10. Koshikawa S., Matsumoto T. & Miura T. (2003) Mandibular morphogenesis during soldier differentiation in the damp-wood termite Hodotermopsis sjoestedti (Isoptera: Termopsidae). Naturwissenschaften 90: 180–184.Google Scholar
  11. Liang P. & Pardee A. B. (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257: 967–971.PubMedGoogle Scholar
  12. Maekawa K., Kitade O. & Matsumoto T. (1999) Molecular phylogeny of orthopteroid insects based on the mitochondrial cytochrome oxidase II gene. Zoological Science 16: 175–184.Google Scholar
  13. Miura T. (2001) Morphogenesis and gene expression in the soldier-caste differentiation of termites. Insectes Sociaux 48: 216–223.Google Scholar
  14. Miura T. & Matsumoto T. (1995) Worker polymorphism and division of labor in the foraging behavior of the black marching termite Hospitalitermes medioflavus, on Borneo Island. Naturwissenschaften 82: 564–567.Google Scholar
  15. Miura T. & Matsumoto T. (1997) Diet and nest material of the processional termite Hospitalitermes, and cohabitation of Termes (Isoptera: Termitidae) on Borneo Island. Insectes Sociaux 44: 267–275.Google Scholar
  16. Miura T. & Matsumoto T. (1998) Foraging organization of the open-air processional lichen-feeding termite Hospitalitermes (Isoptera, Termitidae) in Borneo. Insectes Sociaux 45: 17–32.Google Scholar
  17. Miura T. & Matsumoto T. (2000) Soldier morphogenesis in a nasute termite: discovery of a disk-like structure forming a soldier nasus. Proceedings of the Royal Society London B 267: 1185–1189.Google Scholar
  18. Miura T., Hirono Y., MacHida M., Kitade O. & Matsumoto T. (2000) Caste developmental system of the Japanese damp-wood termite Hodotermopsis japonica (Isoptera: Termopsidae). Ecological Research 15: 83–92.Google Scholar
  19. Miura T., Kamikouchi A., Sawata M., Takeuchi H., Natori S., Kubo T. & Matsumoto T. (1999) Soldier caste-specific gene expression in the mandibular glands of Hodotermopsis japonica (Isoptera: Termopsidae). Proceedings of the National Academy of Sciences USA 96: 13874–13879.Google Scholar
  20. Miura T., Koshikawa S. & Matsumoto T. (2003) Winged presoldiers induced by a juvenile hormone analogue in Zootermopsis nevadensis: implications for plasticity and evolution of caste differentiation in termites. Journal of Morphology 257: 22–32.Google Scholar
  21. Miura T., Roisin Y. & Matsumoto T. (1998) Developmental pathways and polyethism of neuter castes in the processional nasute termite Hospitalitermes medioflavus (Isoptera: Termitidae). Zoological Science 15: 843–848.Google Scholar
  22. Nijhout H. F. (1994) Insect Hormones. Princeton University Press, Princeton, New Jersey.Google Scholar
  23. Nijhout H. F. (1999) Control mechanisms of polyphenic development in insects. Bioscience 49: 181–192.Google Scholar
  24. Nijhout H. F. (2003) Development and evolution of adaptive polyphenisms. Evolution and Development 5: 9–18.Google Scholar
  25. Nijhout H. F. & Wheeler D. E. (1982) Juvenile hormone and the physiological basis of insect polymorphisms. Quarterly Review of Biology 57: 109–133.Google Scholar
  26. Noirot C. (1969) Formation of castes in the higher termites. In: Biology of Termites, Vol. 1 (eds K. Krishna & F. M. Weesner), pp. 311–350. Academic Press, New York.Google Scholar
  27. Noirot C. (1991) Caste differentiation in Isoptera: basic features, role of pheromones. Ethology, Ecology and Evolution 1: 3–7.Google Scholar
  28. Passera L. & Suzzoni J. P. (1979) La role de la reine de Pheidole pallidula (Formicidae, Myrmicinae) dans la sexualisation du couvain après traitement par l’hormone juvénile. Insectes Sociaux 26: 343–353 (in French with English abstract).Google Scholar
  29. Robinson G. E. (1999) Integrative animal behaviour and sociogenomics. Trends in Ecolgy and Evolution 14: 202–205.Google Scholar
  30. Robinson G. E. (2002) Sociogenomics takes flight. Science 297: 204–205.Google Scholar
  31. Roisin Y. (2000) Diversity and evolution of caste patterns. In: Termites: Evolution, Sociality, Symbioses, Ecology (eds T. Abe, D. E. Bignell & M. Higashi), pp. 95–119. Kluwer Academic Publishers, Dordrecht.Google Scholar
  32. Scharf M. E. W. U.,-, Pittendrigh B. R. & Benett G. W. (2003) Caste- and development-associated gene expression in a lower termite. Genome Biology 4: R62.Google Scholar
  33. Tho Y. P. (1992) Termites of Peninsular Malaysia. Malayan Forest Records No. 36 (ed. L. G. Kirton). Forest Research Institute, Malaysia.Google Scholar
  34. Thorne B. (1996) Termite terminology. Sociobiology 28: 253–263.Google Scholar
  35. West-Eberhard M. J. (2003) Developmental Plasticity and Evolution. Oxford University Press, New York.Google Scholar
  36. Wheeler D. E. & Nijhout H. F. (1981) Imaginal wing discs in larvae of the soldier caste of Pheidole bicarinata (Hymenoptera: Formicidae). International Journal of Insect Morphology and Embryology 10: 131–139.Google Scholar
  37. Wheeler D. E. & Nijhout H. F. (1983) Soldier determination in Pheidole bicarinata: Effect of methoprene on caste and size within caste. Journal of Insect Physiology 29: 847–854.Google Scholar
  38. Wheeler D. E. & Nijhout H. F. (2003) A perspective for understanding the modes of juvenile hormone action as a lipid signaling system. Bioessays 25: 994–1001.Google Scholar
  39. Whitfield C. W., Band M. R., Bonald M. F., Kumar C. G., Liu L., Pardinas J. R., Robertson H. M., Bento Soares M. & Robinson G. E. (2002) Annotated expressed sequence tags and cDNA microarrays for studies of brain and behavior in the honey bee. Genome Research 12: 555–566.Google Scholar
  40. Wilson E. O. (1971) The Insect Societies. Harvard University Press, Cambridge, Massachusetts.Google Scholar
  41. Wilson E. O. (1980) Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta). Behavioral Ecology and Sociobiology 7: 143–156.Google Scholar
  42. Wu-Scharf D., Scharf M. E., Pittendrigh B. R. & Bennett G. W. (2003) Expressed sequenced tags from a polyphenic Reticulitermes flavipes cDNA library. Sociobiology 41: 479–490.Google Scholar

Copyright information

© Blackwell Publishing Ltd 2004

Authors and Affiliations

  1. 1.Department of Biology, Graduate School of Arts and SciencesUniversity of TokyoTokyoJapan

Personalised recommendations