Ecological Research

, Volume 18, Issue 6, pp 625–637

Dynamics of evolutionary patterns of clades in a food web system model

Original Articles

The evolutionary patterns of animal species clades in an evolving food web system were examined by computer simulation. In this system, each animal species fed on other species according to feeding preference. The food web system evolved via the appearance and extinction of species. The model succeeded in reproducing evolutionary patterns of diversity similar to those seen in the fossil record. This result indicates that the model reproduced the temporal changes of the rates of colonization and extinction of species in the system, which have been decided a priori in the previous stochastic models. In the food web system, the numbers of both predatory and prey species influenced the temporal diversity patterns in each clade in the system. The number of prey species fluctuated strongly, whereas the number of predatory species gradually increased with time. Therefore, temporal diversity patterns were influenced mainly by the number of predatory species. As a result of the gradual increase of the number of predatory species, it was difficult for each clade to maintain its species diversity for a long time. Slight changes of interspecific interaction can sometimes decide the destiny of a clade. When a clade is faced with extinction, if one predatory species of the clade becomes extinct and one or two prey species of the clade appear, the species diversity in the clade increases again. This result indicates that slight changes of interspecific interaction sometimes decide the destiny of a clade.

Key words

computer simulation diversity evolution food web interspecific interaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez L. W., Alvarez W., Asaro F. & Michel H. V. (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction: experimental results and theoretical interpretation. Science 208: 1095–1108.Google Scholar
  2. Bambach R. K. (1983) Ecospace utilization and guilds in marine communities through the Phanerozoic. In: Biotic Interactions in Recent and Fossil Benthic Communities (eds M. J. S. Tevesz & P. L. McCall), pp. 719–746. Plenum, New York.Google Scholar
  3. Chin K. (1997) What Did Dinosaurs Eat? The Complete Dinosaur (eds J. O. Farlow & M. K. Brett-Surman) chapter 26. Indiana University Press, Bloomington, Indiana. http://www.indiana.edu/~iupress/books/0-253-33349-0ex2.html.Google Scholar
  4. Cohen J. E., Pimm S. L., Yodzis P. & Saldana J. (1993) Body size of animal predators and animal prey in food webs. Journal of Animal Ecology 62: 67–78.Google Scholar
  5. Elder W. P. (1989) Molluscan extinction patterns across the Cenomanian–Turonian boundary in the western interior of the United States. Paleobiology 15: 299–320.Google Scholar
  6. Erwin D. H. (1990) End-Permian. In: Palaeobiology, a Synthesis (eds D. G. E. Briggs & P. R. Crowther) pp. 187–194. Blackwell Scientific Publications, Oxford.Google Scholar
  7. Futuyma D. J. (1986) Evolutionary Biology. Sinauer Associates, Inc, Sunderland, Massachusetts.Google Scholar
  8. Gardner M. R. & Ashby W. R. (1970) Connectance of large dynamic (cybernetic) systems: critical values for stability. Nature 228: 784.Google Scholar
  9. Gilpin M. E. (1994) Community-level competition: asymmetrical dominance. Proceedings of the National Academy of Science of the United States of America 91: 3252–3254.Google Scholar
  10. Gould S. J., Raup D. M., Sepkoski J. J. Jr, Schopf T. J. M. & Simberloff D. S. (1977) The shape of evolution: a comparison of real and random clades. Paleobiology 3: 23–40.Google Scholar
  11. Hallam A. (1984) Pre-Quaternary sea-level changes. Annual Review of Earth and Planetary Science 12: 205–243.Google Scholar
  12. Happel R. & Stadler P. F. (1998) The evolution of diversity in replicator networks. Journal of Theoretical Biology 195: 329–338.Google Scholar
  13. Hayami I. & Hosoda I. (1988) Fortipecten takahashii, a reclining pectinid from the pliocene of north Japan. Palaeontology 31: 419–444.Google Scholar
  14. Hirano H., Toshimitsu S., Matsumoto T. & Takahashi K. (1999) Bioevents and paleoenvironmental changes in Mid-Cretaceous. Fossil 66: 47–49 (in Japanese with English abstract).Google Scholar
  15. Holt R. D. (1977) Predation, apparent competition, and the structure of prey communities. Theoretical Population Biology 12: 197–229.Google Scholar
  16. Holtz T. R. J. (2003) Dinosaur predation. In: Predator–Prey Interactions in the Fossil Record (eds P. H. Kelley, M. Kowalewski & T. A. Hansen) pp. 325–340. Kluwer Academic/Plenum Publishers, New York.Google Scholar
  17. House M. R. (1989) Ammonoid extinction events. Philosophical Transactions of the Royal Society of London, Series B 325: 307–326.Google Scholar
  18. Jennings S., Pinnegar J. K., Polunin N. V. C. & Boon T. W. (2001) Weak cross-species relationships between body size and trophic level belie powerful size-based trophic structuring in fish communities. Journal of Animal Ecology 70: 934–944.Google Scholar
  19. Kelley P. H., Kowalewski M. & Hansen T. A. (2003) Predator–Prey Interactions in the Fossil Record. Kluwer Academic/Plenum Publishers, New York.Google Scholar
  20. Kennedy W. J. (1977) Ammonite evolution. In: Patterns of Evolution: as Illustrated by the Fossil Record (ed. A. Hallam) pp. 251–304. Elsevier, Amsterdam.Google Scholar
  21. Kolata G. B. (1975) Paleobiology: random events over geological time. Science 189: 625–626, 660.Google Scholar
  22. Larwood G. P. (1988) Extinction and Survival in the Fossil Record. Clarendon Press, Oxford.Google Scholar
  23. Maurer B. A. (1999) Untangling Ecological Complexity. The Macroscopic Perspective. University of Chicago Press, Chicago.Google Scholar
  24. May R. M. (1972) Will a large complex system be stable? Nature 238: 413–414.Google Scholar
  25. Nakajima T. (1995) Experimental evolution – a perspective based on evolutionary ecology of bacteria. Japanese Journal of Ecology 45: 43–56. (in Japanese with English abstract).Google Scholar
  26. Neubert M. G., Blumenshine S. C., Duplisea D. E., Jonsson T. & Rashleigh B. (2000) Body size and food web structure: testing the equiprobability assumption and the cascade model. Oecologia 123: 241–251.Google Scholar
  27. Pahl-Wostl C. (1997) Dynamic structure of a food web model: comparison with a food chain model. Ecological Modelling 100: 103–123.Google Scholar
  28. Raup D. M. (1992) Large-body impact and extinction in the Phanerozoic. Paleobiology 18: 80–88.Google Scholar
  29. Raup D. M., Gould S. J., Schopf T. J. M. & Simberloff D. S. (1973) Stochastic models of phylogeny and the evolution of diversity. Journal of Geology 81: 525–542.Google Scholar
  30. Raup D. M. & Stanley S. M. (1971) Principles of Paleontology. W. H. Freeman and Company, San Fransisco.Google Scholar
  31. Rosenzweig M. L. (1995) Species Diversity in Space and Time. Cambridge University Press, Cambridge.Google Scholar
  32. Sato T. & Tanabe K. (1998) Cretaceous plesiosaurs ate ammonites. Nature 394: 629–630.Google Scholar
  33. Schopf T. J. M. (1974) Permo-Triassic extinctions: relation to sea-floor spreading. Journal of Geology 82: 129–143.Google Scholar
  34. Sepkoski J. J. Jr (1979) A kinetic model of Phanerozoic taxonomic diversity. II. Early Phanerozoic families and multiple equilibria. Paleobiology 5: 222–251.Google Scholar
  35. Sepkoski J. J. Jr (1996) Competition in macroevolution: the double wedge revisited. In: Evolutionary Paleobiology (eds D. Jablonski, D. H. Erwin & J. H. Lipps), pp. 211–255. The University of Chicago Press, Chicago and London.Google Scholar
  36. Simberloff D. S. (1974) Permo-Triassic extinctions: effects of area on biotic equilibrium. Journal of Geology 82: 267–274.Google Scholar
  37. Stanley S. M., Signor P. W. I., Lidgard S. & Karr A. F. (1981) Natural clades differ from ‘random’ clades: simulations and analyses. Paleobiology 7: 115–127.Google Scholar
  38. Tokita K. & Yasutomi A. (1999) Mass extinction in a dynamical system of evolution with variable dimension. Physical Review E 60: 682–687.Google Scholar
  39. Tokita K. & Yasutomi A. (2003) Emergence of a complex, symbiotic and stable ecosystem in replicator equations with extinction and mutation. Theoretical Population Biology 63: 131–146.Google Scholar
  40. Valentine J. W. & Moores E. M. (1970) Plate-tectonic regulation of faunal diversity and sea level: a model. Nature 228: 657–659.Google Scholar
  41. Vermeij G. J. (1977) The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology 3: 245–258.Google Scholar
  42. Vermeij G. J. (1983) Traces and trends of predation, with special reference to bivalved animals. Palaeontology 26: 455–465.Google Scholar
  43. Vermeij G. J. (1987) Evolution and Escalation. Princeton University Press, Princeton, New Jersey.Google Scholar
  44. Vézina A. F. (1985) Empirical relationship between predator and prey size among terrestrial vertebrate predators. Oecologia 67: 555–565.Google Scholar
  45. Ward P. D. (1992) On Methuselah’s Trail. John Brockman Associates, New York.Google Scholar
  46. Warren P. H. & Lawton J. H. (1987) Invertebrate predator-prey body size relationship: an explanation for upper triangular food webs and patterns in food web structure? Oecologia 74: 231–235.Google Scholar
  47. Wignall P. B. & Hallam A. (1992) Anoxia as a cause of the Permian/Triassic mass extinction: facies evidence from northern Italy and the western United States. Palaeogeography, Palaeoclimatology, Palaeoecology 93: 21–46.Google Scholar
  48. Wignall P. B. & Twitchett R. J. (1996) Oceanic anoxia and the end Permian mass extinction. Science 272: 1155–1158.PubMedGoogle Scholar
  49. Yoshida K. (2002) Long survival of ‘living fossils’ with low taxonomic diversities in an evolving food web. Paleobiology 28: 464–473.Google Scholar

Copyright information

© Blackwell Publishing Ltd 2003

Authors and Affiliations

  1. 1.Geological Institute, Graduate School of ScienceUniversity of TokyoTokyoJapan

Personalised recommendations