Skip to main content
Log in

Statistical estimation in the presence of possibly incorrect model assumptions

  • Published:
Journal of Statistical Theory and Practice Aims and scope Submit manuscript

Abstract

The estimation problem of a parameter of interest when some model assumptions may be incorrect is considered. The parameter of interest is defined in a model-independent manner and the estimating procedure selects a model with the smallest mean square error (MSE) as estimated by a proposed MSE estimator. This proposed MSE estimator combines both a nonparametric bootstrap and plug-in estimation in its structure. It requires at least one consistent estimator with a quickly disappearing systematic bias (\(\sqrt n \) mean convergence). This estimator is not tied up to a single set of model assumptions (e.g., a class of parametric models), and thus it works across various sets of possibly nonnested classes of statistical models. The derived large sample properties constitute theoretical justification of its use and allow the estimation of the probability of how likely this estimator will have the smallest MSE in a pool of candidate estimators. Multiple simulation studies illustrate the performance of the proposed procedure under various scenarios. A real data example highlights its practical use when a single model is selected from several conceptually different statistical modeling techniques (parametric regression, Cox regression, stratified Cox regression, regression on pseudo-values) and other model selection approaches are not applicable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike, F. 1973. Informaion theory and an extension of the maximum likelihood principle. In Second International Symposium on Information Theory, 267–81. Budapest, September.

  • Bamber, D. C. 1975. The area above the ordinal dominance graph and the area below the receiver operating characteristic graph. Journal of Mathematical Psychology 12:387–415.

    Article  MathSciNet  Google Scholar 

  • Bartolucci, F., and M. Lupparelli. 2008. Focused information criterion for capture–recapture models for closed populations. Scandinavian Journal of Statistics 35:629–49.

    Article  MathSciNet  Google Scholar 

  • Burnham, K. P., and D. R. Anderson. 2002. Model selection and multimodel inference: A practical information theoretic approach. New York, NY: Springer.

    MATH  Google Scholar 

  • Booth, J. G., and S. Sorkar. 1998. Monte-Carlo approximation of bootstrap variance. American Statistician 52:354–57.

    Google Scholar 

  • Claeskens, G., and N.L. Hjort. 2003. The focused information criterion. Journal of American Statistical Association 98:900–16.

    Article  MathSciNet  Google Scholar 

  • Claeskens, G., C. Croux, J. V. Kerckhoven. 2007. Prediction-focused model selection for autoregressive models. Australian and New Zealand Journal of Statistics 49:359–79.

    Article  MathSciNet  Google Scholar 

  • Cook, D., and L. Li. 2003. Discussion. Journal of American Statistical Association 98:925–28.

    Article  Google Scholar 

  • Copelan, E. A., J. C. Biggs, J. M. Thompson, P. Crilley, J. Szer, J. P. Klein, N. Kapoor, B. R. Avalos, I. Cunningham, K. Atkinson, K. Downs, G. S. Harmon, M. B. Daly, I. Brodsky, S. I. Bulova, P. J. Tutschka. 1991. Treatment for acute meyelocytic leukemia with allogeneic bone marrow transplantation following preparation with Bu/Cy. Blood 78:838–43.

    Article  Google Scholar 

  • Efron, B. 1981. Censored data and the bootstrap. Journal of American Statistical Association 76:312–19.

    Article  MathSciNet  Google Scholar 

  • Gruber, S., and M. J. Van der Laan. 2012. tmle: An R package for targeted maximum likelihood estimation. Journal of Statistical Software 51:1–35.

    Article  Google Scholar 

  • Hjort, N. L., and G. Claeskens. 2003. Frequentist model average estimators. Journal of American Statistical Association 98:879–99.

    Article  MathSciNet  Google Scholar 

  • Kaplan, E. L., and P. Meier. 1958. Nonparametric estimator from incomplete observations. Journal of American Statistical Association 53:457–81.

    Article  MathSciNet  Google Scholar 

  • Koenker, R. 2005. Quantile regression. New York, NY: Cambridge University Press.

    Book  Google Scholar 

  • Klein, J. P., M. Gerster, P. K. Andersen, S. Tarima, and M. P. Perme. 2008. SAS and R functions to compute pseudo-values for censored data regression. Computer Methods and Programs in Biomedicine 89:289–300.

    Article  Google Scholar 

  • Klein, J. P., B. Logan, M. Harhoff, and P. K. Andersen. 2007. Analyzing survival curves at a fixed point in time. Statistics in Medicine 26:4505–19.

    Article  MathSciNet  Google Scholar 

  • Klein, J. P., and M. L. Moshenberg. 2003. Survival analysis, 2nd ed. New York, NY: Springer.

    Google Scholar 

  • Ishwaran, H., and J. R. Sunil. 2003. Discussion. Journal of American Statistical Association 98:922–25.

    Article  Google Scholar 

  • Mallows, C. L. 1973. Some Comments on CP. Technometrics 15:661–75.

    MATH  Google Scholar 

  • Schwarz, G. 1978. Estimating the dimension of a model. Annals of Statistics 6:461–64.

    Article  MathSciNet  Google Scholar 

  • Spiegelhalter, D. J., N. G. Best, B. P. Carlin, and A. V. D. Linde. 2002. Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B 64:583–639.

    Article  MathSciNet  Google Scholar 

  • Takeuchi, K. 1976. Distribution of information statistics and a criterion of model fitting (in Japanese). Suri-Kagaku (Mathematical Sciences) 6:461–64.

    Google Scholar 

  • Tarassenko, F. P., S. S. Tarima, A. V. Zhuravlev, and S. Singh. 2015. On sign-based regression quantiles. Journal of Statistical Computation and Simulation 85:1420–41.

    Article  MathSciNet  Google Scholar 

  • Van der Laan, M. J., and S. Rose. 2011. Targeted learning. New York, NY: Springer.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Tarima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarima, S. Statistical estimation in the presence of possibly incorrect model assumptions. J Stat Theory Pract 11, 449–467 (2017). https://doi.org/10.1080/15598608.2017.1299056

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1080/15598608.2017.1299056

Keywords

AMS Subject Classification

Navigation