Skip to main content
Log in

Optimal Designs for Rational Regression Models

  • Published:
Journal of Statistical Theory and Practice Aims and scope Submit manuscript

Abstract

In this article, we consider locally optimal designs problems for rational regression models. In the case where the degrees of polynomials in the numerator and denominator differ by at most 1, we identify an invariance property of the optimal designs if the denominator polynomial is palindromic, which reduces the optimization problem by 50%. The results clarify and extend the particular structure of locally c-, D-, and E-optimal designs for inverse quadratic regression models that have been found by Haines (1992) and have recently been extended by Dette and Kiss (2009). We also investigate the relation between the D-optimal designs for the Michaelis-Menten and EMAX models from a more general point of view. The results are illustrated by several examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boroujerdi, M. 2002. Pharmacokinetics: Principles and applications. New York, NY: McGraw-Hill.

    Google Scholar 

  • Chaloner, K., and I. Verdinelli. 1995. Bayesian experimental design: A review. Stat. Sci., 10(3), 273–304.

    Article  MathSciNet  Google Scholar 

  • Chernoff, H. 1953. Locally optimal designs for estimating parameters. Ann. Math. Stat., 24, 586–602.

    Article  MathSciNet  Google Scholar 

  • Cobby, J. M., P. F. Chapman, and D. J. Pike. 1986. Design of experiments for estimating inverse quadratic polynomial responses. Biometrics, 42, 659–664.

    Article  Google Scholar 

  • Cornish-Browden, A. 1995. Fundamentals of enzyme kinetics (rev. ed.). London, UK: Portland Press.

    Google Scholar 

  • Dette, H. 1997. Designing experiments with respect to “standardized” optimality criteria. J. R. Stat. Soc., Ser. B, 59, 97–110.

    Article  MathSciNet  Google Scholar 

  • Dette, H., and S. Biedermann. 2003. Robust and efficient designs for the Michaelis-Menten model. J. Am. Stat. Assoc., 98, 679–686.

    Article  MathSciNet  Google Scholar 

  • Dette, H., F. Bretz, A. Pepelyshev, and J. C. Pinheiro. 2008. Optimal designs for dose finding studies. J. Am. Stat. Assoc., 103(483), 1225–1237.

    Article  MathSciNet  Google Scholar 

  • Dette, H., L. Haines, and L. A. Imhof. 1999. Optimal designs for rational models and weighted polynomial regression. Ann. Stat., 27, 1272–1293.

    Article  MathSciNet  Google Scholar 

  • Dette, H., and C. Kiss. 2009. Optimal experimental designs for inverse quadratic regression models. Stat. Sin., 19(4), 1567–1586.

    MathSciNet  MATH  Google Scholar 

  • Dette, H., C. Kiss, M. Bevanda, and F. Bretz. 2010. Optimal designs for the EMAX, log-linear and exponential models. Biometrika, 97(2), 513–518.

    Article  MathSciNet  Google Scholar 

  • Dette, H., and V. B. Melas. 2011. A note on the de la Garza phenomenon for locally optimal designs. Ann. Stat., 39(2), 1266–1281.

    Article  MathSciNet  Google Scholar 

  • Dette, H., V. B. Melas, and A. Pepelyshev. 2003. Standardized maximin E-optimal designs for the Michaelis-Menten model. Stat. Sin., 13, 1147–1163.

    MathSciNet  MATH  Google Scholar 

  • Dette, H., V. B. Melas, and A. Pepelyshev. 2004. Optimal designs for a class of nonlinear regression models. Ann. Stat., 32, 2142–2167.

    Article  MathSciNet  Google Scholar 

  • Dette, H., and K. Schorning. 2013. Complete classes of designs for nonlinear regression models and principal representations of moment spaces. Ann. Stat., 41(3), 1260–1267.

    Article  MathSciNet  Google Scholar 

  • Dunn, G. 1988. “Optimal” designs for drug, neurotransmitter and hormone receptor assays. Stat. Med., 7, 805–815.

    Article  Google Scholar 

  • Electronic handbook of statistical methods. (2012). NIST/SEMATECH. https://doi.org/www.itl.nist.gov/div898/handbook

  • Haines, L. M. 1992. Optimal design for inverse quadratic polynomials. South Afr. Stat. J., 26, 25–41.

    MathSciNet  MATH  Google Scholar 

  • He, Z., W. J. Studden, and D. Sun. 1996. Optimal designs for rational models. Ann. Stat., 24, 2128–2142.

    Article  MathSciNet  Google Scholar 

  • Imhof, L. A., and W. J. Studden. 2001. E-optimal designs for rational models. Ann. Stat., 29(3), 763–783.

    Article  MathSciNet  Google Scholar 

  • Johansen, S. 1984. Functional relations, random coefficients and nonlinear regression, with application to kinetic data, Lecture Notes in Statistics, eds. P. Bickel, P. Diggle, S. E. Fienberg, U. Gather, I. Olkin, S. Zeger, Vol. 22. Springer.

  • Karlin, S., and W. J. Studden. 1966. Tchebysheff Systems: With Application inAnalysis and Statistics. Wiley, New York.

    Google Scholar 

  • Kiefer, J. 1974. General equivalence theory for optimum designs (approximate theory). Ann. Stat., 2, 849–879.

    Article  MathSciNet  Google Scholar 

  • Lopez-Fidalgo, J., and W. K. Wong. 2002. Design issues for the Michaelis—Menten model. J. Theoret. Biol., 215, 1–11.

    Article  MathSciNet  Google Scholar 

  • Merle, Y., and F. Mentre. 1995. Bayesian design criteria—computation, comparison, and application to a pharmacokinetic and a pharmacodynamic model. J. Pharmacokinet. Biopharma., 23, 101–125.

    Article  Google Scholar 

  • Pukelsheim, F. 1993. Optimal design of experiments. New York, NY: John Wiley & Sons.

    MATH  Google Scholar 

  • Rasch, D. 1990. Optimum experimental design in nonlinear regression. Commun. Stat. Theory Methods, 19(12), 4789–4806.

    Article  MathSciNet  Google Scholar 

  • Ratkowsky, D. A. 1983. Nonlinear regression modeling: A unified practical approach. New York, NY: Marcel Dekker.

    MATH  Google Scholar 

  • Ratkowsky, D. A. 1990. Handbook of nonlinear regression models. New York, NY: Marcel Dekker.

    MATH  Google Scholar 

  • Silvey, S. D. 1980. Optimal design. London, UK: Chapman & Hall.

    Book  Google Scholar 

  • Song, D., and W. K. Wong. 1998. Optimal two-point designs for the Michaelis-Menten model with heteroscedastic errors. Commun. Stat. Theory Methods, 27(6), 1503–1516.

    Article  Google Scholar 

  • Wang, J. 2006. Optimal parametric design with applications to pharmacokinetic and pharmacodynamic trials. J. Appl. Stat., 33(8), 837–852.

    Article  MathSciNet  Google Scholar 

  • Yang, M. 2010. On the de la Garza phenomenon. Ann. Stat., 38(4), 2499–2524.

    Article  MathSciNet  Google Scholar 

  • Yang, M., and J. Stufken. 2009. Support points of locally optimal designs for nonlinear models with two parameters. Ann. Stat., 37, 518–541.

    Article  MathSciNet  Google Scholar 

  • Yang, M., and J. Stufken. 2012. Identifying locally optimal designs for nonlinear models: A simple extension with profound consequences. Ann. Stat., 40, 1665–1685.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Dette.

Additional information

Color versions of one or more of the figures in the article can be found online at https://doi.org/www.tandfonline.com/ujsp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dette, H., Kiss, C. Optimal Designs for Rational Regression Models. J Stat Theory Pract 9, 376–394 (2015). https://doi.org/10.1080/15598608.2014.910480

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1080/15598608.2014.910480

AMS Subject Classification

Keywords

Navigation