Skip to main content
Log in

Revisiting the Maximum Likelihood Estimation of a Positive Extreme Value Index

  • Published:
Journal of Statistical Theory and Practice Aims and scope Submit manuscript

Abstract

In this article, we revisit Feuerverger and Hall’s maximum likelihood estimation of the extreme value index. Based on those estimators we propose new estimators that have the smallest possible asymptotic variance, equal to the asymptotic variance of the Hill estimator. The full asymptotic distributional properties of the estimators are derived under a general third-order framework for heavy tails. Applications to a real data set and to simulated data are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beirlant, J., G. Dierckx, Y. Goegebeur, and G. Matthys. 1999. Tail index estimation and an exponential regression model. Extremes, 2, 177–200.

    Article  MathSciNet  Google Scholar 

  • Beirlant J., Y. Goegebeur, J. Segers, and J. Teugels. 2004. Statistics of extremes. Theory and applications. Hoboken, NJ: Wiley.

    Book  Google Scholar 

  • Beirlant, J., F. Caeiro, and M. I. Gomes. 2012. An overview and open research topics in the field of statistics of univariate extremes. Revstat, 10(1), 1–31.

    MathSciNet  MATH  Google Scholar 

  • Caeiro, F., and M. I. Gomes. 2006. A new class of estimators of a “scale” second order parameter. Extremes, 9, 193–211.

    Article  MathSciNet  Google Scholar 

  • Caeiro, F., and M. I. Gomes. 2011. Asymptotic comparison at optimal levels of reduced-bias extreme value index estimators. Stat. Neerland., 65(4), 462–488.

    Article  MathSciNet  Google Scholar 

  • Caeiro, F., and M. I. Gomes. 2012. A reduced bias estimator of a ‘scale’ second order parameter. In AIP Conf. Proc, ed. T. E. Simos, G. Psihoyios, C. Tsitouras, and Z. Anastassi, 1479, 1114–1117.

  • Caeiro, F., and M. I. Gomes. 2013. Asymptotic comparison at optimal levels of minimum-variance reduced-bias tail index estimators. In Advances in regression, survival analysis, extreme values, Markov processes and other statistical applications, Studies in Theoretical and Applied Statistics, ed. J. Lita da Silva, F. Caeiro, I. Natário, and C.A. Braumann, 83–91. Berlin, Heidelberg: Springer-Verlag.

    Chapter  Google Scholar 

  • Caeiro, F., and M. I. Gomes. 2014. A semi-parametric estimator of a shape second order parameter. In New advances in statistical modeling and applications, Studies in Theoretical and Applied Statistics, ed. A. Pacheco, R. Santos, M. Rosário Oliveira, and C. D. Paulino, 137–144. Switzerland: Springer International.

    Chapter  Google Scholar 

  • Caeiro, F., M. I. Gomes, and D. D. Pestana. 2005. Direct reduction of bias of the classical Hill estimator. Revstat, 3(2), 111–136.

    MathSciNet  MATH  Google Scholar 

  • Caeiro, F., M. I. Gomes, and L. Henriques-Rodrigues. 2009. Reduced-bias tail index estimators under a third order framework. Commun. Stat. Theory Methods, 38(7), 1019–1040.

    Article  MathSciNet  Google Scholar 

  • Ciuperca, G., and C. Mercadier. 2010. Semi-parametric estimation for heavy tailed distributions. Extremes, 13(1), 55–87.

    Article  MathSciNet  Google Scholar 

  • de Haan, L., and L. Peng. 1998. Comparison of extreme value index estimators. Stat. Neerland., 52, 60–70.

    Article  Google Scholar 

  • Deme, E. H., L. Gardes, and S. Girard. 2013. On the estimation of the second order parameter for heavy-tailed distributions. Revstat, 11(3), 277–299.

    MathSciNet  MATH  Google Scholar 

  • Feuerverger, A., and P. Hall. 1999. Estimating a tail exponent by modelling departure from a Pareto distribution. Ann. Stat., 27, 760–781.

    Article  MathSciNet  Google Scholar 

  • Fraga Alves, M. I., M. I. Gomes, and L. de Haan. 2003. A new class of semi-parametric estimators of the second order parameter. Port. Math., 60(2), 193–213.

    MathSciNet  MATH  Google Scholar 

  • Geluk, J., and L. de Haan. 1987. Regular variation, extensions and Tauberian theorems. CWI Tract 40, Center for Mathematics and Computer Science, Amsterdam, The Netherlands.

    MATH  Google Scholar 

  • Goegebeur, Y., J. Beirlant, and T. de Wet. 2008. Linking Pareto-tail kernel goodness-of-fit statistics with tail index at optimal threshold and second order estimation. Revstat, 6(1), 51–69.

    MathSciNet  MATH  Google Scholar 

  • Gomes, M. I., L. Canto e Castro, M. I. Fraga Alves, and D. D. Pestana. 2008a. Statistics of extremes for IID data and breakthroughs in the estimation of the extreme value index: Laurens de Haan leading contributions. Extremes, 11(1), 3–34.

    Article  MathSciNet  Google Scholar 

  • Gomes, M. I., L. de Haan, and L. Peng. 2002. Semi-parametric estimation of the second order parameter in statistics of extremes. Extremes, 5(4), 387–414.

    Article  MathSciNet  Google Scholar 

  • Gomes, M. I., L. de Haan, and L. Henriques-Rodrigues. 2008b. Tail index estimation for heavy-tailed models: Accommodation of bias in weighted log-excesses. J. R. Stat. Soci., B70(1), 31–52.

    MathSciNet  MATH  Google Scholar 

  • Gomes, M. I., L. Henriques-Rodrigues, H. Pereira, and D. Pestana. 2010. Tail index and second order parameters’ semi-parametric estimation based on the log-excesses. J. Stat. Comput. Simul., 80(6), 653–666.

    Article  MathSciNet  Google Scholar 

  • Gomes, M. I., and M. J. Martins. 2002. “Asymptotically unbiased” estimators of the extreme value index based on external estimation of the second order parameter. Extremes, 5(1), 5–31.

    Article  MathSciNet  Google Scholar 

  • Gomes, M. I., M. J. Martins, and M. M. Neves. 2007. Improving second order reduced-bias extreme value index estimation. Revstat, 5(2), 177–207.

    MathSciNet  MATH  Google Scholar 

  • Hall, P. 1982. On some simple estimates of an exponent of regular variation. J. R. Stat. Soc. B, 44, 37–42.

    MathSciNet  MATH  Google Scholar 

  • Hill, B. M. 1975. A simple general approach to inference about the tail of a distribution. Ann. Stat., 3, 1163–1174.

    Article  MathSciNet  Google Scholar 

  • R Development Core Team. 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

    Google Scholar 

  • Reiss, R.-D., and M. Thomas. 2007. Statistical analysis of extreme values, with application to insurance, finance, hydrology and other fields, 3rd ed. Basel, Switzerland: Birkhäuser Verlag.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederico Caeiro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caeiro, F., Gomes, M.I. Revisiting the Maximum Likelihood Estimation of a Positive Extreme Value Index. J Stat Theory Pract 9, 200–218 (2015). https://doi.org/10.1080/15598608.2014.909754

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1080/15598608.2014.909754

AMS Subject Classification

Keywords

Navigation