Skip to main content
Log in

Using Scaffold Supports to Improve Student Practice and Understanding of an Authentic Inquiry Process in Science

  • Article
  • Published:
Canadian Journal of Science, Mathematics and Technology Education Aims and scope Submit manuscript

Abstract

This study addressed computer-supported collaborative scientific inquiries in remote networked schools (Quebec, Canada). Three dyads of Grade 5–6 classrooms from remote locations across the province collaborated using the knowledge-building tool Knowledge Forum. Customized scaffold supports embedded in the online tool were used to support student understanding and practice of an authentic inquiry process. The research studied how the use of the scaffolds could help students to understand and put into practice an authentic inquiry process. Students created notes and used the scaffolds to support their inquiry process; however, without sufficient direct teacher modeling, coherent use of the scaffolds stayed low across activities. Pre- and posttest results show that the students gained a better understanding of the inquiry process, but low posttest scores suggest further need for direct teacher modeling of the inquiry process during science instruction.

Résumé

Cette étude concerne les enquêtes scientifiques collaboratives assistées par ordinateur dans les écoles éloignées en réseau (Québec, Canada). Trois dyades de classes de 5e et 6e années situées dans des endroits éloignés de la province ont travaillé ensemble par l’intermédiaire de l’outil d’élaboration de connaissances Knowledge Forum. Des supports d’échafaudages personnalisés intégrés dans l’outil en ligne ont favorisé la compréhension des élèves et la pratique d’un processus authentique d’étude. L’étude se penche sur la manière dont ces échafaudages peuvent aider les élèves à comprendre et à mettre en pratique un processus d’enquête authentique. Les élèves ont créé des notes et utilisé les échafaudages pour faciliter leur processus d’enquête. Toutefois, sans une modélisation pédagogique directe suffisante, le niveau d’utilisation cohérente de ces structures est demeuré faible au cours des activités. Les résultats des tests préliminaires et postérieurs démontrent que les élèves ont acquis une meilleure compréhension du processus d’enquête, mais les faibles résultats aux tests finaux indiquent qu’il est indispensable d’augmenter la modélisation pédagogique directe lors de la phase scientifique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allaire, S. (2006). Les afordances socionumériques d’un environnement d’apprentissage hybride en soutien à des stagiaires en enseignement secondaire: De l’analyse réfexive à la coélaboration de connaissances [Socionumériques afordances in a blended learning environment to support preservice teachers in secondary education: From the refexive analysis to knowledge building] (Unpublished doctoral thesis). Université Laval, Canada.

    Google Scholar 

  • American Association for the Advancement of Science. (1994). Benchmarks for science literacy. New York, NY: Oxford University Press.

    Google Scholar 

  • Bereiter, C., & Scardamalia, M. (2005). Technology and literacies: From print literacy to dialogic literacy. In N. Bascia, A. Cumming, A. Datnow, K. Leithwood, & D. Livingstone (Eds.), International handbook of educational policy (pp. 749–761). Dordrecht, The Netherlands: Springer.

    Chapter  Google Scholar 

  • Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educational Researcher, 18(1), 32–42.

    Article  Google Scholar 

  • Bruner, J. (1960). The process of education. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Bruner, J. (1983). Le développement de l’enfant. Savoir faire, Savoir dire [Child’s talk: Learning to use language]. Paris, France: PUF.

    Google Scholar 

  • Burtis, J. (2001). The Analytic Toolkit for Knowledge Forum. Toronto, ON, Canada: Knowledge Forum Project, Ontario Institute for Studies in Education/University of Toronto. Retrieved from http://kftools.oise.utoronto.ca/atk/

    Google Scholar 

  • Chan, C. K. K., Lam, Y. C. K., & van Aalst, J. (2003, April). Social-constructivist assessment, knowledge building discourse, and conceptual understanding. Paper presented at the AERA, Chicago, IL.

    Google Scholar 

  • Clancey, W. J. (1995). A tutorial on situated learning. In J. Self (Ed.), Proceedings of the International Conference on Computers and Education (pp. 49–70). Charlottesville, VA: Association for the Advancement of Computing in Education (AACE).

    Google Scholar 

  • Collins, A., Brown, J. S., & Newman, S. E. (1989). Cognitive apprenticeship: Teaching the craft of reading, writing, and mathematics. In L. B. Resnick (Ed.), Knowing, learning, and instruction: Essays in honor of Robert Glaser (pp. 453–494). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Etheris, A. I., & Tan, S. C. (2004). Computer-supported collaborative problem solving and anchored instruction in a mathematics classroom: An exploratory study. International Journal of Learning Technology, 1(1), 16–39.

    Article  Google Scholar 

  • Hakkarainen, K. (2003). Emergence of progressive-inquiry culture in computer-supported collaborative learning. Learning Environments Research, 6, 199–220.

    Article  Google Scholar 

  • Hamel, C., Turcotte, S., & Laferrière, T. (2013). Evolution of the conditions for successful innovation in remote networked schools. International Education Studies, 6(3), 1–14. doi:10.5539/ies.v6n3p1

    Article  Google Scholar 

  • Laferrière, T., Hamel, C., Allaire, S., Turcotte, S., Breuleux, A., Beaudoin, J., & Gaudreault-Perron, J. (2011). L’ É c o l e éloignée en réseau (ÉÉR), un modèle [Remote networked schools: A model]. Québec, QC, Canada: Centre francophone d’informatisation des organisations (CEFRIO).

    Google Scholar 

  • Laferrière, T., Hamel, C., & Searson, M. (2013). Barriers to successful implementation of technology integration in educational settings: A case study. Journal of Computer Assisted Learning, 29(5), 463–473. doi:10.1111/jcal.12034

    Article  Google Scholar 

  • Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Lee, E. Y. C., Chan, C. K. K., & Aalst, J. (2006). Students assessing their own collaborative knowledge building. International Journal of Computer-Supported Collaborative Learning, 1(2), 277–307. doi:10.1007/s11412-006–8997-6

    Article  Google Scholar 

  • Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis (2nd ed.). Newbury Park, CA: Sage.

    Google Scholar 

  • National Research Council. (1996). National science education standards. Washington, DC: National Academy Press.

    Google Scholar 

  • National Research Council. (2000). Educating teachers of science, mathematics and technology: New practices for the new millennium. Washington, DC: National Academy Press.

    Google Scholar 

  • National Research Council. (2011). A framework for K–12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academy Press.

    Google Scholar 

  • Palincsar, A. S., & Herrenkohl, L. R. (2002). Designing collaborative learning contexts. Theory Into Practice, 41(1), 26–32.

    Article  Google Scholar 

  • Pea, R. D. (2004). The social and technological dimensions of scafolding and related theoretical concepts for learning, education, and human activity. Journal of the Learning Sciences, 13(3), 423–451.

    Article  Google Scholar 

  • Scardamalia, M. (2004). CSILE/Knowledge Forum. In Educational technology: An encyclopedia. Santa Barbara, CA: ABC-CLIO.

    Google Scholar 

  • Scardamalia, M., Bereiter, C., & Lamon, M. (1994). The CSILE project: Trying to bring the classroom into world 3. In K. McGilly (Ed.), Classroom lessons: Integrating cognitive theory and classroom practice (pp. 201–228). Cambridge, MA: MIT Press.

    Google Scholar 

  • Turcotte, S. (2008). Computer-supported collaborative inquiry in remote networked schools (Unpublished doctoral thesis). McGill University, Montreal, Canada.

    Google Scholar 

  • Turcotte, S. (2012). Computer-supported collaborative inquiry on buoyancy: A discourse analysis supporting the “pieces” position on conceptual change. Journal of Science Education and Technology, 21(6), 808–825.

    Article  Google Scholar 

  • Turcotte, S., Laferrière, T., Hamel, C., & Breuleux, A. (2009). Multilevel innovation in remote networked schools. Systemic Practice and Action Research, 23(4), 285–299. doi:10.1007/s11213-009–9160-x

    Article  Google Scholar 

  • Zhang, J., Scardamalia, M., Lamon, M., Messina, R., & Reeve, R. (2006). Socio-cognitive dynamics of knowledge building in the work of 9- and 10-year-olds. Educational Technology Research and Development, 55(2), 117–145. doi:10.1007/s11423-006–9019-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Hamel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turcotte, S., Hamel, C. Using Scaffold Supports to Improve Student Practice and Understanding of an Authentic Inquiry Process in Science. Can J Sci Math Techn 16, 77–91 (2016). https://doi.org/10.1080/14926156.2015.1093199

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14926156.2015.1093199

Navigation