Skip to main content

Advertisement

Log in

Recovering Knowledge for Science Education Research: Exploring the “Icarus Effect” in Student Work

  • Article
  • Published:
Canadian Journal of Science, Mathematics and Technology Education Aims and scope Submit manuscript

Abstract

Science education research has built a strong body of work on students’ understandings but largely overlooked the nature of science knowledge itself. Legitimation Code Theory (LCT), a rapidly growing approach to education, offers a way of analyzing the organizing principles of knowledge practices and their effects on science education. This article focuses on one specific concept from LCT—semantic gravity—that conceptualizes differences in context dependence. The article uses this concept to qualitatively analyze tertiary student responses to a thermal physics question. One result, that legitimate answers must reside within a specific range of context dependence, illustrates how a focus on the organizing principles of knowledge offers a way forward for science education.

Résumé

La recherche en enseignement des sciences a produit de nombreuses études sur la compréhension des étudiants, mais a souvent ignoré la nature du savoir scientifique lui-même. La théorie de la légitimation du code (TLC), une approche de plus en plus importante en enseignement, propose une façon d’analyser les principes structurels des pratiques du savoir et leurs effets sur l’enseignement des sciences. Cet article est centré sur un concept en particulier tiré de la TLC—la gravité sémantique—qui conceptualise les différences comme étant dépendantes du contexte. L’article se sert de ce concept pour faire une analyse qualitative des réponses tertiaires des étudiants à une question de physique thermique. L’un des résultats, selon lequel les réponses légitimes doivent se situer dans un certain rayon de dépendance contextuelle, illustre comment le fait de mettre l’accent sur les principes structurels du savoir ouvre une avenue prometteuse pour l’enseignement des sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson, R. K., Renkl, A., & Merrill, M. M. (2003). Transitioning from studying examples to solving problems: Effects of self-explanation prompts and fading worked-out steps. Journal of Educational Psychology, 95(4), 774–783. doi:10.1037/0022-0663.95.4.774

    Article  Google Scholar 

  • Beichner, R. J. (2009). An introduction to physics education research. Getting Started in Physics Education Research, 2(1), 1–25.

    Google Scholar 

  • Bektasli, B. (2013). The development of astronomy concept test for determining preservice science teachers’ misconceptions about astronomy. Egitim Ve Bilim-Education and Science, 38(168), 362–372.

    Google Scholar 

  • Biggs, J. B., & Collis, K. F. (1982). Evaluating the quality of learning: The SOLO taxonomy. New York, NY: Academic Press.

    Google Scholar 

  • Bing, T. J., & Redish, E. F. (2009). Analyzing problem solving using math in physics: Epistemological framing via warrents. Physical Review Special Topics–Physics Education Research, 5.

    Google Scholar 

  • Bloom, B. S. (1976). Human characteristics and school learning. New York, NY: McGraw-Hill.

    Google Scholar 

  • Boudreaux, A., & Campbell, C. (2012). Student understanding of liquid-vapor phase equilibrium. Journal of Chemical Education, 89(6), 707–714. doi:10.1021/ed2000473

    Article  Google Scholar 

  • Chang, Y. H., Chang, C. Y., & Tseng, Y. H. (2010). Trends of science education research: An automatic content analysis. Journal of Science Education and Technology, 19(4), 315–331. doi:10.1007/s10956-009-9202-2

    Article  Google Scholar 

  • Clement, J., Brown, D. E., & Zietsman, A. (1989). Not all preconceptions are misconceptions: Finding “anchoring conceptions” for grounding instruction on students’ intuitions. International Journal of Science Education, 11(5), 554–565.

    Article  Google Scholar 

  • diSessa, A. A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10(2/3), 105–225.

    Article  Google Scholar 

  • diSessa, A. A. (2006). A history of conceptual change research: Threads and fault lines. In K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 265–281). New York, NY: Cambridge University Press.

    Google Scholar 

  • Francek, M. (2013). A compilation and review of over 500 geoscience misconceptions. International Journal of Science Education, 35(1), 31–64. doi:10.1080/09500693.2012.736644

    Article  Google Scholar 

  • Georgiou, H. (2009). An exploration of tertiary students’ conceptions of familiar thermodynamics processes (Unpublished honours dissertation). The University of Sydney, Sydney, Australia.

    Google Scholar 

  • Georgiou, H., & Sharma, M. D. (2010). A report on a preliminary diagnostic for identifying thermal physics conceptions of tertiary students. International Journal of Innovation in Science and Mathematics Education, 18, 32–51.

    Google Scholar 

  • Halloun, I. A., & Hestenes, D. (1985). The initial knowledge state of college physics students. American Journal of Physics, 53(11), 1043–1055.

    Article  Google Scholar 

  • Hammer, D. (1994). Epistemological beliefs in introductory physics. Cognition and Instruction, 12(2), 151–183.

    Article  Google Scholar 

  • Helms, J. V., & Carlone, H. B. (1999). Science education and the commonplaces of science. Science Education, 83(2), 233–245.

    Article  Google Scholar 

  • Hood, S. (2014). Ethnographies on the move, stories on the rise: Methods in the humanities. In K. Maton, S. Hood, & S. Shay (Eds.), Knowledge-building: Educational studies in Legitimation Code Theory. London, England: Routledge.

  • Kilpert, L., & Shay, S. (2013). Kindling fires: Examining the potential for cumulative learning in a journalism curriculum. Teaching in Higher Education, 18(1), 40–52. doi:10.1080/13562517.2012.678326

    Article  Google Scholar 

  • Lin, H. S., Cheng, H. J., & Lawrenz, F. (2000). The assessment of student and teachers’ understanding of gas laws. Journal of Chemical Education, 77(2), 235–238.

    Article  Google Scholar 

  • Macnaught, L., Maton, K., Martin, J. R., & Matruglio, E. (2013). Jointly constructing semantic waves: Implications for teacher training, Linguistics & Education, 24(1), 50–63.

    Article  Google Scholar 

  • Martin, J. L. (2012). Instantiation, realisation and multimodalmusical semanticwaves. In J. Knox (Ed.), To boldly proceed: Papers from the 39th International Systemic Functional Congress (pp. 183–188). Sydney, Australia: International Systemic Functional Congress.

    Google Scholar 

  • Martin, J. R., & Maton, K. (Eds.). (2013). Special issue: Cumulative knowledge-building in secondary schooling. Linguistics and Education, 24(1), 1–74.

    Google Scholar 

  • Maton, K. (2013). Making semantic waves: A key to cumulative knowledge-building, Linguistics and Education, 24(1), 8–22.

    Article  Google Scholar 

  • Maton, K. (2014). Knowledge and knowers: Towards a realist sociology of education. London, England: Routledge.

    Google Scholar 

  • Maton, K., Carvalho, L., & Dong, A. (2014). LCT into praxis: Creating an e-learning environment for informal learning. In K. Maton, S. Hood, & S. Shay (Eds.), Knowledge-building: Educational studies in Legitimation Code Theory. London, England: Routledge.

    Google Scholar 

  • Maton, K., & Chen, R. T.-H. (2014). LCT and qualitative research: Creating a language of description to study constructivist pedagogy. In K. Maton, S. Hood, & S. Shay (Eds.), Knowledge-building: Educational studies in Legitimation Code Theory. London, England: Routledge.

    Google Scholar 

  • Maton, K., Hood, S., & Shay, S. (Eds.). (2014). Knowledge-building: Educational studies in Legitimation Code Theory. London, England: Routledge.

    Google Scholar 

  • Maton, K., & Moore, R. (Eds.). (2010). Social realism, knowledge and the sociology of education: Coalitions of the mind. London, England: Continuum.

    Google Scholar 

  • Meltzer, D. E. (2004, August). Student learning gain in upper-level thermal physics: Comparisons and contrasts with students in introductory courses. Paper presented at the Physics Education Research Conference, Sacramento, CA.

    Google Scholar 

  • Meltzer, D. E. (2006, July). Investigation of student learning in thermodynamics and implications for instruction in chemistry and engineering. Paper presented at the Physics Education Research Conference, Syracuse.

    Google Scholar 

  • Minstrell, J. (2001). Facets of students’ thinking: Designing to cross the gap from research to standards-based practice. In K. Crowley, C. D. Schunn, & T. Okada (Eds.), Designing for science: Implications for professional, instructional, and everyday science (pp. 415–443). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Moore, R. (2009). Towards the sociology of truth. London, England: Continuum.

    Google Scholar 

  • Redish, E. F. (2003, July). A theoretical framework for physics education research: Modeling student thinking. Paper presented at the Proceedings of the Enrico Fermi Summer School, Course CLVI, Varenna.

    Google Scholar 

  • Sabella, M., & Redish, E. F. (2007). Knowledge activation and organization in physics problem-solving. American Journal of Physics, 75(11), 1017–1029.

    Article  Google Scholar 

  • Schwab, J. J. (1978). Science, curriculum, and liberal education. Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Scribner, C. (1963). Henri Poincaré and the principle of relativity. American Journal of Physics, 32, 672–678.

    Article  Google Scholar 

  • Shalem, Y., & Slonimsky, L. (2010). Seeing epistemic order: Construction and transmission of evaluative criteria. British Journal of Sociology Education, 31(6), 755–778.

    Article  Google Scholar 

  • Shay, S., & Steyn, D. (2014). Enabling knowledge progression in vocational curricula: Design as a case study. In K. Maton, S. Hood, & S. Shay (Eds.), Knowledge-building: Educational studies in Legitimation Code Theory. London, England: Routledge.

    Google Scholar 

  • Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14.

    Article  Google Scholar 

  • Tan, M. (2012). Knowledge, truth, and schooling for social change: Studying environmental education in science classrooms (Unpublished doctoral dissertation). University of Toronto, Toronto, Canada.

    Google Scholar 

  • Teodorescu, R. E., Bennhold, C., Feldman, G., & Medsker, L. (2013). New approach to analyzing physics problems: A taxonomy of instroductory physics problems. Physical Review Special Topics - Physics Education Research, 9, 1–20.

    Article  Google Scholar 

  • Tsai, C. C., & Wen, M. L. (2005). Research and trends in science education from 1998 to 2002: A content analysis of publication in selected journals. International Journal of Science Education, 27(1), 3–14. doi:10.1080/0950069042000243727

    Article  Google Scholar 

  • Wheelahan, L. (2010). Why knowledge matters in curriculum: A social realist argument. London, England: Routledge.

    Google Scholar 

  • Wolff, K., & Luckett, K. (2013). Integrating multidisciplinary engineering knowledge. Teaching in Higher Education, 18(1), 78–92.

    Article  Google Scholar 

  • Yalcin, M., Altun, S., Turgut, U., & Aggul, F. (2009). First year Turkish science undergraduates’ understandings and misconceptions of light. Science & Education, 18(8), 1083–1093. doi:10.1007/s11191-008-9157-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen Georgiou.

Additional information

This article was originally submitted to the Special Issue “Graduate Student Innovations in Science, Mathematics, and Technology Education Research.” It was reviewed and accepted for publication by the guest editors of the special issue.

Cet article a éetée soumis pour publication dans notre numéero spéecial sur les innovations des éetudiants de maîtrise et de doctorat en enseignement des sciences, des mathéematiques et des technologies. Il a éetée éevaluée et acceptée par les réedacteurs invitées de ce numéero spéecial.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Georgiou, H., Maton, K. & Sharma, M. Recovering Knowledge for Science Education Research: Exploring the “Icarus Effect” in Student Work. Can J Sci Math Techn 14, 252–268 (2014). https://doi.org/10.1080/14926156.2014.935526

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14926156.2014.935526

Navigation