Skip to main content
Log in

How to Act? A Question of Encapsulating Infinity

  • Article
  • Published:
Canadian Journal of Science, Mathematics and Technology Education Aims and scope Submit manuscript

Abstract

This article investigates some of the specific features involved in accommodating the idea of actual infinity as it appears in set theory. It focuses on the conceptions of two individuals with sophisticated mathematics background, as manifested in their engagement with variations of a well-known paradox: the ping-pong ball conundrum. The APOS theory is used as a framework to interpret participants’ efforts to resolve the paradoxes. The cases discussed focus on how transfinite subtraction may be conceptualized, and they suggest that there is more to accommodating the idea of actual infinity than the ability to act on a completed object—rather, it is the manner in which objects are acted upon that is also significant.

Résumé

Cet article se penche sur certains traits spécifiques qui entrent en jeu lorsqu’il s’agit d’accorder une place à l’infini tel qu’il apparaît dans la théorie des ensembles. L’article est centré sur les conceptions de deux personnes hautement qualifiées dans le domaine des mathématiques, telles que ces conceptions se manifestent dans les variations apportées à un paradoxe bien connu: celui des balles de ping-pong. La thèorie APOS est utilisèe comme cadre pour interprèter les efforts des participants lorsqu’ils tentent de rèsoudre les paradoxes. Les cas analysès sont centrès sur les façons dont la soustraction transfinie peut être conceptualisèe, et suggèrent que le concept d’infini réel implique plus qu’une simple capacité ‘d’agir’ sur un objet complété: la manière dont se produit l’action sur les objets serait également significative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allis, V., & Koetsier, T. (1995). On some paradoxes of the infinite II. The British Journal for the Philosophy of Science, 46, 235–247.

    Article  Google Scholar 

  • Asiala, M., Brown, A., DeVries, D., Dubinsky, E., Mathews, D., & Thomas, K. (1996). A framework for research and curriculum development in undergraduate mathematics education. In J. Kaput, A. H. Schoenfeld, & E. Dubinsky (Eds.), Research in collegiate mathematics education II (pp. 1–32). Providence, RI: American Mathematical Society.

    Google Scholar 

  • Borasi, R. (1985). Errors in the enumeration of infinite sets. Focus on Learning Problems in Mathematics, 7, 77–78.

    Google Scholar 

  • Brown, A., McDonald, M., & Weller, K. (2010). Step by step: Infinite iterative processes and actual infinity. In F. Hitt, D. Holton, & P. Thompson (Eds.), Research in collegiate mathematics education (Vol. 8, pp. 115–142). Providence, RI: American Mathematical Society.

    Google Scholar 

  • Cantor, G. (1915). Contributions to the founding of the theory of transfinite numbers (P. Jourdain, Trans.). New York, NY: Dover Publications (Original work published 1915)

  • Cottrill, J., Dubinsky, E., Nichols, D., Schwingendorf, K., Thomas, K., & Vidakovic, D. (1996). Understanding the limit concept: Beginning with a coordinated process scheme. Journal of Mathematical Behaviour, 15, 167–192.

    Article  Google Scholar 

  • Dubinsky, E., Arnon, I., & Weller, K. (2013). Preservice teachers’; understanding of the relation between a fraction or integer and its decimal expansion: The case of 0.999 … and 1. Canadian Journal of Science, Mathematics and Technology Education, 13 (3), 232–258.

    Article  Google Scholar 

  • Dubinsky, E., Weller, K., McDonald, M. A., & Brown, A. (2005a). Some historical issues and paradoxes regarding the concept of infinity: An APOS-based analysis: Part 1. Educational Studies in Mathematics, 58, 335–359.

    Article  Google Scholar 

  • Dubinsky, E., Weller, K., McDonald, M. A., & Brown, A. (2005b). Some historical issues and paradoxes regarding the concept of infinity: An APOS-based analysis: Part 2. Educational Studies in Mathematics, 60, 253–266.

    Article  Google Scholar 

  • Dubinsky, E., Weller, K., Stenger, C., & Vidakovic, D. (2008). Infinite iterative processes: The tennis ball problem. European Journal of Pure and Applied Mathematics, 1 (1), 99–121.

    Google Scholar 

  • Ely, R. (2011). Envisioning the infinite by projecting finite properties. Journal of Mathematical Behavior, 30, 1–18.

    Article  Google Scholar 

  • Fischbein, E., Tirosh, D., & Hess, P. (1979). The intuition of infinity. Educational Studies in Mathematics, 10, 3–40.

    Article  Google Scholar 

  • Hahn, H. (1956). Infinity. In J. Newman (Ed.), The world of mathematics (Vol. 3, pp. 1593–1613). New York, NY: Dover Publications.

    Google Scholar 

  • Hazzan, O. (1999). Reducing abstraction level when learning abstract algebra concepts. Educational Studies in Mathematics, 40 (1), 71–90.

    Article  Google Scholar 

  • Lakoff, G., & Nunez, R. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. New York, NY: Basic Books.

    Google Scholar 

  • Mamolo, A., & Bogart, T. (2011). Riffs on the infinite ping-pong ball conundrum. International Journal of Mathematical Education in Science and Technology, 42 (5), 615–623.

    Article  Google Scholar 

  • Mamolo, A., & Zazkis, R. (2008). Paradoxes as a window to infinity. Research in Mathematics Education, 10 (2), 167–182.

    Article  Google Scholar 

  • McDonald, M. A., & Brown, A. (2008). Developing notions of infinity. In M. Carlson & C. Rasmussen (Eds.), Making the connection: Research and teaching in undergraduate mathematics (pp. 55–64). Washington, DC: The MAA.

    Chapter  Google Scholar 

  • Moore, A. W. (1995). A brief history of infinity. Scientific American, 272 (4), 112–116.

    Article  Google Scholar 

  • Radu, I., & Weber, K. (2011). Refinements in mathematics undergraduate students’; reasoning on completed infinite iterative processes. Educational Studies in Mathematics, 78, 165–180.

    Article  Google Scholar 

  • Tirosh, D., & Tsamir, P. (1996). The role of representations in students’; intuitive thinking about infinity. International Journal of Mathematical Education in Science and Technology, 27 (1), 33–40.

    Article  Google Scholar 

  • Tsamir, P. (1999). The transition from the comparison of finite sets to the comparison of infinite sets: Teaching prospective teachers. Educational Studies in Mathematics, 38, 209–234.

    Article  Google Scholar 

  • Tsamir, P. (2003). Primary intuitions and instruction: The case of actual infinity. In A. Selden, E. Dubinsky, G. Harel, & F. Hitt (Eds.), Research in collegiate mathematics education V (pp.79–96). Providence, RI: American Mathematical Society.

    Chapter  Google Scholar 

  • Tsamir, P., & Tirosh, D. (1999). Consistency and representations: The case of actual infinity. Journal for Research in Mathematics Education, 30, 213–219.

    Article  Google Scholar 

  • Van Bendegem, J. P. (1994). Ross’; Paradox is an impossible super-task. The British Journal for the Philosophy of Science, 45, 743–748.

    Article  Google Scholar 

  • Weller, K., Arnon, A., & Dubinsky, E. (2009). Preservice teachers’; understanding of the relation between a fraction or integer and its decimal expansion. Canadian Journal of Science, Mathematics, and Technology Education, 9 (1), 5–28.

    Article  Google Scholar 

  • Weller, K., Arnon, A., & Dubinsky, E. (2011). Preservice teachers’; understanding of the relation between a fraction or integer and its decimal expansion: Strength and stability of belief. Canadian Journal of Science, Mathematics, and Technology Education, 11 (2), 129–159.

    Article  Google Scholar 

  • Weller, K., Brown, A., Dubinsky, E., McDonald, M., & Stenger, C. (2004). Intimations of infinity. Notices of the AMS, 51 (7), 740–750.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ami Mamolo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mamolo, A. How to Act? A Question of Encapsulating Infinity. Can J Sci Math Techn 14, 1–22 (2014). https://doi.org/10.1080/14926156.2014.874613

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14926156.2014.874613

Navigation