Skip to main content
Log in

Using Multiple Solution Tasks for the Evaluation of Students’ Problem-Solving Performance in Geometry

  • Published:
Canadian Journal of Science, Mathematics and Technology Education Aims and scope Submit manuscript

Abstract

The article demonstrates that multiple solution tasks (MSTs) in the context of geometry can serve as a research instrument for evaluating geometry knowledge and creativity. Geometry knowledge is evaluated based on the correctness and connectedness of solutions, whereas creativity is evaluated based on a combination of fluency, flexibility, and originality of solutions. In this article, the MST research instrument is introduced in connection with the theoretical analysis of the research literature and then explained and analyzed using geometry students’ performance results on one MST. The analysis shows that the research instrument differentiates between students belonging to high- and regular-level instruction groups and sheds light on the interrelations between components of geometry knowledge and creativity.

Résumé

L’article montre que les tâches à solutions multiples (TSM) dans le contexte de la géométrie peuvent servir comme outils de recherche pour évaluer les connaissances en géométrie et la créativité. Les connaissances en géométrie sont évaluées sur la base de la justesse des solutions, tandis que la créativité est évaluée sur la base d’une combinaison de facteurs tels que la facilité, la souplesse et l’originalité des solutions. Dans cet article, les TSM sont introduites comme outils de recherche en lien avec l’analyse théorique de la littérature dans le domaine, et elles sont ensuite expliquées et analysées au moyen des résultats obtenus par des étudiants de géométrie dans une TSM. L’analyse montre que cet outil de recherche permet de distinguer les étudiants qui appartiennent à des groupes de niveau régulier ou supérieur, et jette la lumière sur les interrelations qui existent entre les différents aspects des connaissances en géométrie et la créativité.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acevedo Nistal, A., Van Dooren, W., Clarebout, G., Elen, J., & Verschaffel, L. (2009). Conceptualising, investigating and stimulating representational flexibility in mathematical problem solving and learning: A critical review. ZDM Mathematics Education, 41, 627–636.

    Article  Google Scholar 

  • Ball, D. (1988). The subject matter preparation of prospective mathematics teachers: Challenging the myths (Research Report 88–3). East Lansing: Michigan State University, National Center for Research on Teacher Education. Retrieved from http://ncrtl.msu.edu/http/rreports/html/pdf/rr883.pdf

    Google Scholar 

  • Ball, D. L., & Bass, H. (2003). Toward a practice-based theory of mathematical knowledge for teaching. In B. Davis & E. Simmt (Eds.), Proceedings of the 2002 annual meeting of the Canadian Mathematics Education Study Group (pp. 3–14). Edmonton, Alberta: CMESG.

    Google Scholar 

  • Chamberlin, S. A., & Moon, S. M. (2005). Model-eliciting activities as a research instrument to develop and identify creatively gifted mathematicians. The Journal of Secondary Gifted Education, 1, 37–47.

    Article  Google Scholar 

  • Chazan, D. (1993). High school geometry students’ justification for their views of empirical evidence and mathematical proof. Educational Studies in Mathematics, 24, 359–387.

    Article  Google Scholar 

  • Clements, D. H. (2003). Teaching and learning geometry. In J. Kilpatrick, W. G. Martin, & D. Schifter (Eds.), A research companion to principles and standards for school mathematics (pp. 151–173). Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • Clements, D. H., & Battista, M. T. (1992). Geometry and spatial reasoning. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 420–464). New York, NY: Macmillan.

    Google Scholar 

  • De Villiers, M. (2004). Using dynamic geometry to expend mathematics teachers’ understanding of proof. International Journal of Mathematical Education in Science and Technology, 35, 703–724.

    Article  Google Scholar 

  • Dreyfus, T., & Eisenberg, T. (1986). On the aesthetics of mathematical thought. For the Learning of Mathematics, 6(1), 2–10.

    Google Scholar 

  • Elia, I., Van den Heuvel-Panhuizen, M., & Kolovou, A. (2009). Exploring strategy use and strategy flexibility in nonroutine problem solving by primary school high achievers in mathematics. ZDM Mathematics Education,41, 605–618.

    Google Scholar 

  • Ervynck, G. (1991). Mathematical creativity. In D. Tall (Ed.), Advanced mathematical thinking (pp. 42–53). Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Fennema, E., & Romberg, T. A. (Eds.). (1999). Classrooms that promote mathematical understanding. Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Goldin, G. A. (2009). The affective domain and students’ mathematical inventiveness. In R. Leikin, A. Berman, & B. Koichu (Eds.), Creativity in mathematics and the education of gifted students (pp. 149–163). Rotterdam, The Netherlands: Sense Publishers.

    Google Scholar 

  • Hanna, G. (1996, July). The ongoing value of proof. Paper presented at Conference of the International Group for the Psychology of Mathematics Education (PME 20), Valencia, Spain. Retrieved from http://fcis.oise.utoronto.ca/~ghanna/pme96prf.html

    Google Scholar 

  • Hansen, V. L. (1998). General considerations on curricula designs in geometry. In C. Mammana & V. Villani (Eds.), Perspectives on the teaching of geometry for the 21st century (pp. 235–242). Dordrecht, The Netherlands: Kluwer.

    Chapter  Google Scholar 

  • Haylock, D. W. (1987). A framework for assessing mathematical creativity in schoolchildren. Educational Studies in Mathematics, 18, 59–74.

    Article  Google Scholar 

  • Heinze A., Star, J., & Verschaffel, L. (2009). Flexible/adaptive use of strategies and representations in mathematics education. [Special issue]. ZDM Mathematics Education, 41, 535–707.

    Article  Google Scholar 

  • Herbst, P. (2002). Engaging students in proving: A double bind on the teacher. Journal for Research in Mathematics Education, 33, 176–203.

    Article  Google Scholar 

  • Herbst, P., & Brach, C. (2006). Proving and doing proofs in high school geometry classes: What is it that is going on for students? Cognition and Instruction, 24, 73–122.

    Article  Google Scholar 

  • Hershkowitz, R. (1990). Psychological aspects of learning geometry. In J. Kilpatric & P. Nesher (Eds.), Mathematics and cognition (70–95). Cambridge, MA: Cambridge University Press.

    Chapter  Google Scholar 

  • Hershkowitz, R., Parzysz, B., & Van Dormolen, J. (1996). Space and shape. In A. J. Bishop, M. A. Clements, & C. Keitel (Eds.), International handbook of mathematics education, (pp. 161–204). Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Hiebert, J., & Carpenter, T. P. (1992). Learning and teaching with understanding. In D. A. Ggrouws (Ed.), Handbook for research on mathematics teaching and learning (pp. 65–97). New York, NY: Macmillan.

    Google Scholar 

  • House, P. A., & Coxford, A. F. (1995). Connecting mathematics across the curriculum: 1995 Yearbook. Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • Krutetskii, V. A. (Author), Kilpatrick, J., & Wirszup, I. (Eds.). (1976). The psychology of mathematical abilities in schoolchildren. Chicago, IL: The University of Chicago Press.

    Google Scholar 

  • Kwon, O. N., Park, J. S., & Park, J. H. (2006). Cultivating divergent thinking in mathematics through an open-ended approach. Asia Pacific Education Review, 7, 51–61.

    Article  Google Scholar 

  • Laborde, C. (2000). Dynamic geometry environments as a source of rich learning contexts for the complex activity of proving. Educational Studies in Mathematics, 44, 151–161.

    Article  Google Scholar 

  • Leikin, R. (2003). Problem-solving preferences of mathematics teachers: Focusing on symmetry. Journal of Mathematics Teacher Education, 6, 297–329.

    Article  Google Scholar 

  • Leikin, R. (2006). About four types of mathematical connections and solving problems in different ways. Aleh-The (Israeli) Senior School Mathematics Journal, 36, 8–14.

    Google Scholar 

  • Leikin, R. (2007). Habits of mind associated with advanced mathematical thinking and solution spaces of mathematical tasks. In The Fifth Conference of the European Society for Research in Mathematics Education–CERME-5. (pp. 2330–2339) (CD-ROM and Online). Retrieved from http://ermeweb.free.fr/Cerme5.pdf

    Google Scholar 

  • Leikin, R. (2009a). Exploring mathematical creativity using multiple solution tasks. In R. Leikin, A. Berman & B. Koichu (Eds.), Creativity in mathematics and the education of gifted students. (pp. 129–145). Rotterdam, The Netherlands: Sense.

    Google Scholar 

  • Leikin, R. (2009b). Multiple proof tasks: Teacher practice and teacher education. In F.-L. Lin, F.-J. Hsieh, G. Hana, & M. De Villiers (Eds.), The proceedings of the 19th ICMI Study conference: Proofs and proving in mathematics education (Vol. 2, pp. 31–36).Taipei, Taiwan: National Taipei University.

    Google Scholar 

  • Leikin, R., & Lev, M. (2007). Multiple solution tasks as a magnifying glass for observation of mathematical creativity. In J.-H. Woo, H.-C. Lew, K.-S. Park, & D.-Y. Seo (Eds.), Proceedings of the 31st International Conference for the Psychology of Mathematics Education (Vol. 3, pp. 161–168). Seoul, Korea: The Korea Society of Educational Studies in Mathematics.

    Google Scholar 

  • Leikin, R., & Levav-Waynberg, A. (2007). Exploring mathematics teacher knowledge to explain the gap between theory-based recommendations and school practice in the use of connecting tasks. Educational Studies in Mathematics, 66, 349–371.

    Article  Google Scholar 

  • Leikin, R., & Levav-Waynberg, A. (2008). Solution spaces of multiple-solution connecting tasks as a mirror of the development of mathematics teachers’ knowledge. Canadian Journal of Science, Mathematics and Technology Education, 8(3), 233–251.

    Article  Google Scholar 

  • Leikin, R., Levav-Waynberg, A., Gurevich, I., & Mednikov, L. (2006). Implementation of multiple solution connecting tasks: Do students’ attitudes support teachers’ reluctance? Focus on Learning Problems in Mathematics, 28, 1–22.

    Google Scholar 

  • Levav-Waynberg, A. (2011). Solving geometry problems in different ways to promote the development of geometric knowledge and creativity. (Unpublished doctoral dissertation). University of Haifa, Haifa, Israel.

    Google Scholar 

  • Liljedahl, P., & Sriraman, B. (2006). Musings on mathematical creativity. For the Learning of Mathematics, 26, 20–23.

    Google Scholar 

  • Lithner, J. (2008). A research framework for creative and imitative reasoning. Educational Studies in Mathematics, 67, 255–276.

    Article  Google Scholar 

  • Mann, E. L. (2006). Creativity: The essence of mathematics. Journal for the Education of the Gifted, 30, 236–260.

    Article  Google Scholar 

  • National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: Author.

    Google Scholar 

  • Neubrand, M. (1998). General tendencies in the development of geometry teaching in the past two decades. In C. Mammana & V. Villani (Eds.), Perspectives on the teaching of geometry for the 21st century (pp. 226–228). Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Poincaré, H. (1948). Science and method. New York, NY: Dover.

    Google Scholar 

  • Polya, G. (1963). On learning, teaching, and learning teaching. American Mathematical Monthly, 70, 605–619.

    Article  Google Scholar 

  • Polya, G. (1973). How to solve it; a new aspect of mathematical method. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Polya, G. (1981). Mathematical discovery: On understanding, learning and teaching problem solving. New York, NY: Wiley.

    Google Scholar 

  • Schoenfeld, A. H. (1983). Problem solving in the mathematics curriculum: A report, recommendations, and an annotated bibliography. Washington, DC: The Mathematical Association of America.

    Google Scholar 

  • Schoenfeld, A. H. (1985). Mathematical problem solving. Orlando, FL: Academic Press.

    Google Scholar 

  • Schoenfeld, A. H. (1988). When good teaching leads to bad results: The disasters of “well-taught” mathematics courses. Educational Psychologist, 23, 145–166.

    Article  Google Scholar 

  • Schoenfeld, A. H. (1994). What do we know about mathematics curricula? Journal of Mathematical Behaviour, 13, 55–80.

    Article  Google Scholar 

  • Senk, S. L., & Thompson, D. R. (2003). Standards-based school mathematics curricula: What are they? What do students learn? Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Sierpinska, A. (1994). Understanding in mathematics. Washington, DC: Falmer.

    Google Scholar 

  • Silver, E. A. (1997). Fostering creativity through instruction rich in mathematical problem solving and problem posing. ZDM-Zentralblatt fuer Didaktik der Mathematik, 3, 75–80.

    Article  Google Scholar 

  • Simon, M. A. (1989). Intuitive understanding in geometry: The third leg. School Science and Mathematics, 89, 373–379.

    Article  Google Scholar 

  • Skemp, R. R. (1987). The psychology of learning mathematics. Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Sriraman, B. (2005). Are giftedness and creativity synonyms in mathematics? The Journal of Secondary Gifted Education, 17, 20–36.

    Article  Google Scholar 

  • Sriraman, B. (2009). The characteristics of mathematical creativity. ZDM Mathematics Education, 41, 13–27.

    Article  Google Scholar 

  • Star, J. R., & Newton, K. J. (2009). The nature and development of experts’ strategy flexibility for solving equations. ZDM Mathematics Education, 41, 557–567.

    Article  Google Scholar 

  • Star, J. R., & Rittle-Johnson, B. (2008). Flexibility in problem solving: The case of equation solving. Learning and Instruction, 18, 565–579.

    Article  Google Scholar 

  • Sternberg, R. J., & Lubart, T. I. (1996). Investing in creativity. American Psychologist, 51, 677–688.

    Article  Google Scholar 

  • Sternberg, R. J., & Lubart, T. I. (2000). The concept of creativity: Prospects and paradigms. In R. J. Sternberg (Ed.), Handbook of creativity (pp. 93–115). New York, NY: Cambridge University Press.

    Google Scholar 

  • Subotnik, R. F., Pillmeier, E., & Jarvin, L. (2009). The psychosocial dimensions of creativity in mathematics: Implications for gifted education policy. In R. Leikin, A. Berman, & B. Koichu (Eds.), Creativity in mathematics and the education of gifted students. (pp. 165–179). Rotterdam, The Netherlands: Sense.

    Google Scholar 

  • Torbeyns, J., De Smedt, B., Ghesquière, P., & Verschaffel, L. (2009). Jump or compensate? Strategy flexibility in the number domain up to 100. ZDM Mathematics Education, 41, 581–590.

    Article  Google Scholar 

  • Torrance, E. P. (1974). The Torrance Tests of Creative Thinking. Technical-norms manual. Benseville, IL: Scholastic Testing Services.

    Google Scholar 

  • Van Hiele, P. M. (1986). Structure and insight. A theory of mathematics education. London, England: Academic Press.

    Google Scholar 

  • Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press. (Original work published 1930)

    Google Scholar 

  • Wagner, D. (2003). Being in a mathematical place: Immersion in mathematical investigation. In B. Davis & E. Simmt (Eds.), Proceedings of the 2002 Annual Meeting of the Canadian Mathematics Education Study Group, (p. 149). Edmonton, AB, Canada: CMESG.

    Google Scholar 

  • Warner, L. B., Schorr, R. Y., & Davis, G. E. (2009). Flexible use of symbolic research instruments for problem solving, generalization, and explanation. ZDM Mathematics Education, 41, 663–679.

    Article  Google Scholar 

  • Weisberg, R. W. (1993). Creativity: Beyond the myth of genius. New York, NY: Freeman.

    Google Scholar 

  • Zazkis, R., & Leikin, R. (2008). Exemplifying definitions: Example generation for the analysisof mathematics knowledge. Educational Studies in Mathematics, 69, 131–148.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anat Levav-Waynberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levav-Waynberg, A., Leikin, R. Using Multiple Solution Tasks for the Evaluation of Students’ Problem-Solving Performance in Geometry. Can J Sci Math Techn 12, 311–333 (2012). https://doi.org/10.1080/14926156.2012.732191

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14926156.2012.732191

Navigation