Skip to main content

Advertisement

Log in

Les fonctions dans un environnement numérique d’apprentissage: étude des apprentissages des éèves sur deux ans

  • Published:
Canadian Journal of Science, Mathematics and Technology Education Aims and scope Submit manuscript

Résumé

Les environnements numériques d’apprentissage, particulièrement ceux qui offrent des capacités de représentations multiples, sont complexes dans leur fonctionnement et dans leurs rapports aux mathématiques. C’est pour cela que les chercheurs sont maintenant sensibles à la nécessité d’un cadre didactique et ergonomique rendant compte des potentialités de ces environnements. La recherche présentée ici aborde Casyopée, un environnement logiciel géométrique et algébrique dédié à l’apprentissage des fonctions au lycée. Les situations d’apprentissage proposées visent à approcher la notion de fonction via la modélisation fonctionnelle des dépendances géométriques. Les résultats ont indiqué un développement conjoint de connaissances mathématiques sur les fonctions et de connaissances sur l’artefact pendant la genèse instrumentale, et ont montré comment l’utilisation régulière de l’artefact permet aux élèves d’articuler ces deux types de connaissances. Notre étude a éclairé les potentialités d’une Typologie d’activités pour l’enseignement et l’apprentissage des fonctions en environnements numériques d’apprentissage. Finalement, nous avons analysé comment l’usage de Casyopée peut faire émerger un co-développement des conceptions «processus» et «objet» et favoriser donc une compréhension flexible des fonctions.

Abstract

Digital learning environments, particularly ones that have the capacity for multiple representations, are complex in both their functioning and their relation to mathematics. For this reason, researchers are nowaware of the need for an ergonomic and didactic framework that takes into account the possibilities offered by these environments. The research presented here discusses Casyopée, a geometric and algebraic software environment intended for the learning of functions at the upper secondary school level. The proposed instructional scenarios aim to introduce students to the notion of the function through the functional modelling of geometrical dependencies. Results showed that during instrumental genesis, students developed a simultaneous understanding of the artefact and of mathematical concepts about functions. Results also showed how the regular use of artefacts enabled students to articulate these two types of knowledge. Our study revealed the possibilities for a typology of activities for the teaching and learning of functions within digital learning environments. Finally, we analyzed how the use of Casyopée could prompt a co-development of “process” and “object” concepts and in so doing promote a flexible understanding of functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  • Aldon, G., Artigue, M., Bardini, C, Baroux-Raymond, D., Bonnafet, J.-L., Combes, M.-C. … Zucchi, I. (2008). Nouvel environnement technologique, nouvelles ressources, nouveaux modes de travail: le projet e-CoLab. Repères IREM, 72, 51–78.

    Google Scholar 

  • Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7(3), 245–274.

    Article  Google Scholar 

  • Arzarello, F. et Robutti, O. (2004). Approaching functions through motion experiments. Educational Studies in Mathematics, Special Issue CD Rom.

    Google Scholar 

  • Bloch, I. (2003). Teaching functions in a graphic milieu: What forms of knowledge enable students to conjecture and prove? Educational Studies in Mathematics, 52, 3–28.

    Article  Google Scholar 

  • Bueno-Ravel, L. et Gueudet, G. (2009). Online resources in mathematics, teachers’ geneses and didactical techniques. International Journal of Computers for Mathematical Learning, 14(1), 1–20.

    Article  Google Scholar 

  • Comin, E. (2005). Variables et fonctions, du college au lycee: meprise didactique ou quiproquo interinstitutionnel. Petit x, 67, 33–61.

    Google Scholar 

  • Drijvers, P., Kieran, C. et Mariotti, M. A. (2010). Integrating technology into mathematics education: Theoretical perspectives. Dans C. Hoyles et J.-B. Lagrange (dir.), Mathematics education and technology - Rethinking the terrain (p. 89–132) New York: Springer.

    Google Scholar 

  • Duval, R. (1993). Registres de representation semiotique et fonctionnement cognitif de la pensee. Annales de Didactique et de Sciences cognitives, 5, 37–65.

    Google Scholar 

  • Falcade, R., Laborde, C. et Mariotti, M. A. (2007). Approaching functions: Cabri tools as instruments of semiotic mediation. Educational Studies in Mathematics, 66(3), 317–333.

    Article  Google Scholar 

  • Guin, D. et Trouche L. (1999). The complex process of converting tools into mathematical instruments: The case of calculators International Journal of Computers for Mathematical Learning, 3, 195–227.

    Article  Google Scholar 

  • Guin, D., Ruthven, K. et Trouche, L. (2005). The didactical challenge of symbolic calculators: Turning a computational device into a mathematical instrument.New York: Springer.

    Book  Google Scholar 

  • Haspekian, M. (2005). An «instrumental approach» to study the integration of a computer tool into mathematics teaching: The case of spreadsheets. International Journal of Computers for Mathematical Learning, 10(2), 109–141.

    Article  Google Scholar 

  • Hodgson, R. et Muller, E. R. (1992). The impact of symbolic mathematical systems on mathematics education. Dans B. Cornu et A. Ralston (dir.), The influence of computers and informatics on mathematics and its teaching. Science and technology education series, 44 (p. 93–107) Paris: UNESCO.

    Google Scholar 

  • Kieran, C. (2004). The core of algebra: Reflections on its main activities. Dans K. Stacey, H. Chick et M. Kendal (dir.), The future of teaching and learning of algebra: The 12th ICMI Study (p. 21–34) Dordrecht, Pays-Bas: Kluwer.

    Google Scholar 

  • Lagrange, J.-B. (2005). Curriculum, classroom practices and tool design in the learning of functions through technology-aided experimental approaches. International Journal of Computers for Mathematical Learning, 10(2), 143–189.

    Article  Google Scholar 

  • Lagrange, J.-B. et Artigue, M. (2009). Students’ activities about functions at upper secondary level: A grid for designing a digital environment and analysing uses. Dans M. Tzekaki, M. Kaldrimidou et C. Sakonidis (dir.), Proceedings of the 33rd Conference of the International Group for the Psychology of Mathematics Education. Thessaloniki, Grèce: PME.

    Google Scholar 

  • Lagrange, J.-B. et Gelis, J.-M. (2008). The Casyopée project: A CAS environment for students’ better access to algebra. International Journal of Continuing Engineering Education and Life-Long Learning, 18(5/6), 575–584.

    Article  Google Scholar 

  • Maracci, M., Cazes, C., Vandebrouck, F. et Mariotti, M. A. (2010). Casyopée in the classroom: Two different theory-driven pedagogical approaches. Dans V. Durant-Guerrier, S. Soury-Lavergne et F. Arzarello (dir.), Proceedings of the 6th Congress of the European Society for Research in Mathematics Education (p. 1399–1408). Lyon, France: CERME 6.

    Google Scholar 

  • Rabardel, P. (1995). Les hommes et les technologies: approche cognitive des instruments contemporains.Paris: Armand Colin.

    Google Scholar 

  • Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on process and objects as different sides of the same coin. Educational Studies in Mathematics, 22(1), 1–36.

    Article  Google Scholar 

  • Sfard, A. (1992). Operational origins of mathematical objects and the quandary of reification–The case of functions. Dans G. Harel et E. Dubinsky (dir.), The concept of function: Aspects of epistemology and pedagogy (p. 59–84) Washington, DC: Mathematical Association of America.

    Google Scholar 

  • Tall, D. (1996). Functions and calculus. Dans A. J. Bishop et al. (dir.), International handbook of mathematics education (p. 289–325) Dordrecht, Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Trouche, L. (2007). Environnements informatisés d’apprentissage: quelle assistance didactique pourla construction des instruments mathématiques? Dans R. Floris et F. Conne (dir.), Environnement informatiques, enjeux pour l’enseignement des mathématiques (p. 19–38). Bruxelles: De Boeck.

    Google Scholar 

  • Vergnaud, G. (1991). Langage et pensée dans l’apprentissage des mathématiques. Revue franc¸aise de Pédagogie, 96(1), 79–86.

    Article  Google Scholar 

  • Vérillon, P. et Rabardel, P. (1995). Cognition and artefacts: A contribution to the study of thought in relation to instrumented activity. European Journal of Psychology in Education, 10(1), 77–101.

    Article  Google Scholar 

  • Vygotsky. (1978). Mind and society.Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Weigand, H.-G. et Bichler, E. (2010). Towards a competence model for the use of symbolic calculators in mathematics: The case of functions. ZDM-The International Journal on Mathematics Education, 42(7), 697–713.

    Article  Google Scholar 

  • White, T. (2009). Encrypted objects and decryption processes: Problem-solving with functions in a learning environment based on cryptography. Educational Studies in Mathematics, 72(1), 17–37.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tran Kiem Minh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minh, T.K. Les fonctions dans un environnement numérique d’apprentissage: étude des apprentissages des éèves sur deux ans. Can J Sci Math Techn 12, 233–258 (2012). https://doi.org/10.1080/14926156.2012.704127

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14926156.2012.704127

Navigation