Skip to main content
Log in

Development of Teachers’ Conceptions Through Learning and Teaching: The Meaning and Potential of Multiple-Solution Tasks

  • Published:
Canadian Journal of Science, Mathematics and Technology Education Aims and scope Submit manuscript

Abstract

This study analyzes development of teachers’ mathematical and pedagogical conceptions in systematic (through learning) and craft (through teaching) modes and the relationships between them. We focus on teachers’ conceptions of themeaning and potential of multiple-solution connecting tasks in school mathematics. We found that in systematic mode teachers increase primarily their shared conceptions and that the development of mathematical conceptions precedes that of pedagogical conceptions. Only in craft mode do they develop new understandings while their mathematical and pedagogical conceptions become integrated and advance each other mutually.

Résumé

Cette étude analyse le développement des conceptions mathématiques et pédagogiques chez les enseignants pour ce qui est des aspects systématiques (par le biais de l’apprentissage) et pratiques (par le biais de l’enseignement), ainsi que les rapports qui existent entre ces deux modalités. Nous centrons notre attention sur les idées des enseignants à propos du sens et du potentiel des tâches à solutions multiples en enseignement des mathématiques à l’école. Nos résultats montrent que, pour les aspects systématiques, les enseignants développent principalement leurs conceptions partagées, et que le développement des conceptions mathématiques précède le développement des conceptions pédagogiques. C’est seulement pour ce qui est des modalités pratiques que les enseignants approfondissent leurs connaissances, au fur et à mesure que leurs conceptions mathématiques et pédagogiques s’intègrent les unes aux autres et se favorisent mutuellement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ball, D. L. (1993). Halves, pieces, and twoths:Constructing representational contexts in teaching fractions. In T. Carpenter, E. Fennema, & T. Romberg, (Eds.), (Rational numbers: An integration of research (pp. 157–196). Hillsdale, NJ: Erlbaum.

  • Barbeau, E. J., & Taylor, P. J. (Eds.). (2009). ICMI Study-16 Volume: Mathematical challenge in and beyond the classroom. Study Volume of ICMI study 16. New York, NY: Springer.

    Google Scholar 

  • Brousseau, G. (1997). Theory of didactical situations in mathematics. Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educational Researcher, 1, 32–41.

    Article  Google Scholar 

  • Cooney, T., & Shealy, B. (1997). On understanding the structure of teachers’ beliefs and their relationship to change. In E. Fennema & B. Scott-Nelson (Eds.), Mathematics teachers in transisition (pp. 87–109). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Da Ponte, J. P., & Chapman, O. (2006). Mathematics teachers’ knowledge and practices. In A. Gutiérrez & P. Boero (Eds.), Handbook of research on the psychology of mathematics education: Past present and future (pp. 461–494). Rotterdam: Sense.

    Google Scholar 

  • Davydov, V. V. (1996). Theory of developing education [Razvivayushee obuchenie]. Moscow: Intor.

    Google Scholar 

  • Dhombres, J. (1993). Is one proof enough? Travels with a mathematician of the baroque period. Educational Studies in Mathematics, 24, 401–419.

    Article  Google Scholar 

  • Dreyfus, T., & Eisenberg, T. (1986). On the aesthetics of mathematical thought. For the Learning of Mathematics, 6(1), 2–10.

    Google Scholar 

  • Ervynck, G. (1991). Mathematical creativity. In D. Tall (Ed.), Advanced mathematical thinking (pp. 42–53). Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Fennema, E., & Romberg, T. A. (Eds.). (1999). Classrooms that promote mathematical understanding. Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Hiebert, J., & Carpenter, T. P. (1992). Learning and teaching with understanding. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 65–97). New York: Macmillan.

    Google Scholar 

  • House, P. A., & Coxford, A. F. (1995). Connecting mathematics across the curriculum: 1995 Yearbook. Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • Kennedy, M. M. (2002). Knowledge and teaching. Teacher and Teaching: Theory and Practice, 8, 355–370.

    Article  Google Scholar 

  • Kieren, T. E. (1990). Understanding for teaching for understanding. The Alberta Journal of Educational Research, 36, 191–201.

    Google Scholar 

  • Kilpatrick, J., Hoyles, C., & Skovsmose, O., with Valero, P. (Eds.). (2005). Meaning in mathematics education. Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Krainer, K. (2003). Teams, communities & networks. Journal of Mathematics Teacher Education, 6, 185–194.

    Article  Google Scholar 

  • Krutetskii, V. A. (1976). The psychology of mathematical abilities in school children (J. Teller, Trans., J. Kilpatrick & I. Wirszup, Eds.). Chicago: The University of Chicago Press.

  • Lave, J. (1996). Teaching, as learning, in practice. Mind, Culture & Activity, 3(3), 149–164.

    Article  Google Scholar 

  • Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Leikin, R. (2003). Problem-solving preferences of mathematics teachers. Journal of Mathematics Teacher Education, 6, 297–329.

    Article  Google Scholar 

  • Leikin, R. (2006a). About four types of mathematical connections and solving problems in different ways. Aleh—The (Israeli) Senior School Mathematics Journal, 36, 8–14.

    Google Scholar 

  • Leikin, R. (2006b). Learning by teaching: The case of Sieve of Eratosthenes and one elementary school teacher. In R. Zazkis & S. Campbell (Eds.), Number theory in mathematics education: Perspectives and prospects (pp. 115–140). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Leikin, R. (2007). Habits of mind associated with advanced mathematical thinking and solution spaces of mathematical tasks. In The Fifth Conference of the European Society for Research in Mathematics Education—CERME-5 (pp. 2330–2339). Retrieved October, 3, 2009, from https://doi.org/ermeweb.free.fr/CERME5b/

    Google Scholar 

  • Leikin, R. (2009). Multiple proof tasks: Teacher practice and teacher education. In F.-L. Lin, F.-J. Hsieh, G. Hana, & M. De Villiers (Eds.), Proceeding of the 19th ICMI Study conference: Proofs and proving in mathematics education (Vol. 2, pp. 31–36). Taiwan: National Taipei University.

    Google Scholar 

  • Leikin, R., & Lev, M. (2007). Multiple solution tasks as a magnifying glass for observation of mathematical creativity. In J.-H. Woo, H.-C. Lew, K.-S. Park, & D.-Y. Seo (Eds.) Proceedings of the 31st International Conference for the Psychology of Mathematics Education (pp. 161–168). Korea: The Korea Society of Educational Studies in Mathematics.

    Google Scholar 

  • Leikin, R., & Levav-Waynberg, A. (2007). Exploring mathematics teacher knowledge to explain the gap between theorybased recommendations and school practice in the use of connecting tasks. Educational Studies in Mathematics, 66, 349–371.

    Article  Google Scholar 

  • Leikin, R., & Levav-Waynberg, A. (2008). Solution spaces of multiple-solution connecting tasks as a mirror of the development of mathematics teachers’ knowledge. Canadian Journal of Science, Mathematics and Technology Education, 8(3), 233–251.

    Article  Google Scholar 

  • Leikin, R., Levav-Waynberg, A., Gurevich, I., & Mednikov, L. (2006). Implementation of multiple solution connecting tasks: Do students’ attitudes support teachers’ reluctance? FOCUS on Learning Problems in Mathematics, 28, 1–22.

    Google Scholar 

  • Leikin, R., & Zazkis, R. (in press). Learning through teaching mathematics: Development of teachers’ knowledge and expertise in practice. Springer.

  • Lloyd, G. M. (2002). Mathematics teachers’ beliefs and experiences with innovative curriculum materials. The role of curriculum in teacher development. In G. C. Leder, E. Pehkonen, & G. Torner (Eds.), Beliefs: A hidden variable in mathematics education? (pp. 149–159). Utrecht, The Netherlands: Kluwer.

    Google Scholar 

  • National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: Author.

    Google Scholar 

  • Piaget, J. (1985). The equilibration of cognitive structures: The central problem of intellectual development. Chicago: University of Chicago Press.

    Google Scholar 

  • Polya, G. (1973). How to solve it. A new aspect of mathematical method. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Roth, W.-M. (1998). Designing communities. Boston: Kluwer Academic.

    Book  Google Scholar 

  • Scheffler, I. (1965). Conditions of knowledge. An introduction to epistemology and education. Glenview, IL: Scott, Foresman & Company.

    Google Scholar 

  • Schoenfeld, A. H. (Ed.) (1983). Problem solving in the mathematics curriculum: A report, recommendations’ and an annotated bibliography. Washington, DC: The Mathematical Association of America.

    Google Scholar 

  • Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22, 1–36.

    Article  Google Scholar 

  • Shulman, L. S. (1986). Those who understand: Knowing growth in teaching. Educational Researcher, 5(2), 4–14.

    Article  Google Scholar 

  • Sierpinska, A. (1990). Some remarks on understanding in mathematics. For the Learning of Mathematics, 10, 24–36.

    Google Scholar 

  • Silver, E. A., Ghousseini, H., Gosen, D., Charalambous, C., & Font Strawhun, B. T. (2005). Moving from rhetoric to praxis: Issues faced by teachers in having students consider multiple solutions for problems in the mathematics classroom. Journal of Mathematical Behavior, 24, 287–301.

    Article  Google Scholar 

  • Silver, E. A., & Marshall, S. P. (1990). Mathematical and scientific problem solving: Findings, issues, and instructional implications. In B. F. Jones & L. Idol (Eds.), Dimensions of thinking and cognitive instruction (Vol. 1, pp. 265–290). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Simon, A. M. (1997). Developing new models of mathematics teaching: An imperative for research on mathematics teacher development. In E. Fennema & B. Scott-Nelson (Eds.), Mathematics teachers in transition (pp. 55–86). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Simon, M. A. (2000). Research on the development of mathematics teachers: The Teacher Development Experiment. In A. E. Kelly & R. A. Lesh (Eds.), Research design in mathematics and science education (pp. 335–359). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Simon, M. A. (2007). Constraints on what teachers can learn from their practice: Teachers’ assimilatory schemes. In J-H Woo, H.-C. Lew, K.-S. Park, & D.-Y. Seo (Eds.) Proceedings of the 31st International Conference for the Psychology of Mathematics Education (pp. 137–142). Korea: The Korea Society of Educational Studies in Mathematics.

    Google Scholar 

  • Skemp, R. R. (1987). The psychology of learning mathematics. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Steinbring, H. (1998). Elements of epistemological knowledge for mathematics teachers. Journal of Mathematics Teacher Education, 1, 157–189.

    Article  Google Scholar 

  • Stigler, J. W., & Hiebert, J. (1999). The teaching gap: Best ideas from the world’s teachers for improving education in the classroom. New York: The Free Press.

    Google Scholar 

  • Strauss, A., & Corbin, J. (1990). Basics of qualitative research: Grounded theory procedures and techniques. Newbury Park, CA: Sage.

    Google Scholar 

  • Thompson, A. G. (1992). Teachers’ beliefs and conceptions: A synthesis of the research. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 127–146). New York: Macmillan.

    Google Scholar 

  • Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Yerushalmy, M., Chazan, D., & Gordon, M. (1990). Mathematical problem posing: Implications for facilitating student inquiry in classrooms. Instructional Science, 19, 219–245.

    Article  Google Scholar 

  • Zaslavsky, O., Chapman, O., & Leikin, R. (2003). Professional development of mathematics educators: Trends and tasks. In A. J. Bishop, M. A. Clements, D. Brunei, C. Keitel, J. Kilpatrick, & F. K. S. Leung (Eds.), The second international handbook of mathematics education (pp. 875–915). Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roza Leikin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leikin, R., Levav-Waynberg, A. Development of Teachers’ Conceptions Through Learning and Teaching: The Meaning and Potential of Multiple-Solution Tasks. Can J Sci Math Techn 9, 203–223 (2009). https://doi.org/10.1080/14926150903314305

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14926150903314305

Navigation