Skip to main content

Advertisement

Log in

Private Profit, Science, and Science Education: Critical Problems and Possibilities for Action

  • Published:
Canadian Journal of Science, Mathematics and Technology Education Aims and scope Submit manuscript

Abstract

Although governments, educators, and others have made significant efforts to promote education that would help students to develop more realistic conceptions of the nature of science, there continue to be difficulties in that regard. Fields of professional science often are represented in school science as isolated from fields of technology and from societies. Such a view may assist scientists in relatively freely pursuing topics of interest to them, using methods common to their communities, and sharing their findings and conclusions with colleagues. In this view, it would be left to engineers, politicians, and others to determine appropriate uses of products of the sciences. In practice, fields of science seemed to have—to a great extent—held close interactions with fields of technology and with societies. An aspect of such relationships that has had very little attention in school science is the nature of associations between fields of business and science. In this article, analyses of the nature of business—science relationships is explored, with reference to problem-setting, problem-solving, and peer persuasion aspects of knowledge-building and dissemination in the sciences. In association with these analyses are bl]References to Robert Merton’s institutional imperatives for the sciences. The article finishes with some general recommendations for science education.

Résumé

Bien que les gouvernements, les enseignants et d’autres encore aient fait des efforts significatifs dans le but de promouvoir un enseignement capable d’aider les étudiants à élaborer des conceptions plus réalistes de la nature des sciences, il reste encore des difficultés à affronter. L’école représente souvent les différents domaines scientifiques professionnels comme détachés aussi bien des domaines technologiques que des sociétés. Une telle vision des choses est susceptible d’aider les scientifiques à se pencher plus ou moins librement sur les sujets qui les intéressent personnellement, au moyen deméthodes couramment utilisées dans leur communauté, pour ensuite diffuser les résultats et conclusions de leurs recherches à leurs collègues. Selon cette perspective, on laisserait aux ingénieurs, aux politiciens et à d’autres le soin de décider quelles sont les applications appropriées qu’on peut faire du produit du travail scientifique. Dans la pratique, il semble que les disciplines scientifiques aient des liens plutôt serrés avec les domaines technologiques et les sociétés. Or, s’il est un aspect qu’on a peu traité en enseignement des sciences, c’est bien la nature des liens qui existent entre les domaines liés à l’entreprise et les sciences. Dans cet article, nous tentons donc d’analyser la nature des liens qui unissent les milieux d’entreprise et les sciences lorsqu’il s’agit de construction et de diffusion des connaissances scientifiques, en particulier en matière de définition des problèmes, de résolution de problèmes et de persuasion des pairs. En relation avec ces analyses, nous faisons référence aux impératifs institutionnels de Robert Merton. L’article se termine par des recommandations générales susceptibles d’être appliquées à l’enseignement des sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abd-El-Khalick, F., & Lederman, N. G. (2000). Improving science teachers’ conceptions of nature of science: A critical review of the literature. International Journal of Science Education, 22(7), 665–701.

    Article  Google Scholar 

  • Allchin, D. (2004). Should the sociology of science be rated X? Science Education, 88(6), 934–946.

    Article  Google Scholar 

  • American Association for the Advancement of Science. (1989). Science for all Americans: A Project 2061 report on literacy goals in science, mathematics, and technology. Washington, DC: Author.

    Google Scholar 

  • Angell, M. (2004). The truth about the drug companies: How they deceive us and what to do about it. New York: Random House.

    Google Scholar 

  • Axelrod, P. (2000). What is to be done? Envisioning the university’s future. In J. L. Turk (Ed.), The corporate campus: Commercialization and the dangers to Canada’s colleges and universities (pp. 201–208). Toronto: James Lorimer.

    Google Scholar 

  • Bakan, J. (2003). The corporation: The pathological pursuit of profit and power. Toronto: Viking.

    Google Scholar 

  • Barnes, R. L., Hammond, S. K., & Glantz, S. A. (2006). The tobacco industry’s role in the 16 Cities Study of Secondhand Tobacco Smoke: Do the data support the stated conclusions? EnvironmentalHealth Perspectives, 114(12), 1890–1897.

    Google Scholar 

  • Bell, R. L. (2006). Perusing Pandora’s box: exploring the what, when, and how of nature of science instruction. In L. B. Flick & N. G. Lederman (Eds.), Scientific inquiry and nature of science: Implications for teaching, learning, and teacher education (pp. 427–446). Dordrecht: Springer.

    Google Scholar 

  • Bencze, J. L. (2001). Subverting corporatism in school science. Canadian Journal of Science, Mathematics and Technology Education, 1(3), 349–355.

    Article  Google Scholar 

  • Bodenheimer, T. (2000). Uneasy alliance: Clinical investigators and the pharmaceutical industry. The New England Journal of Medicine, 342(20), 1539–1545.

    Article  Google Scholar 

  • Bok, D. (2003). Universities in the marketplace: The commercialization of higher education. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Bourdieu, P. (1998). Utopia of endless exploitation: The essence of neoliberalism. Le Monde diplomatigue, December. Retrieved from http://mondediplo.com

    Google Scholar 

  • Buxton, C. A. (2006). Creating contextually authentic science in a “low-performing” urban elementary school. Journal of Research in Science Teaching, 43(7), 695–721.

    Article  Google Scholar 

  • Carlsen, W. S. (1998). Engineering design in the classroom: Is it good science education or is it revolting? Research in Science Education, 28(1), 51–63.

    Article  Google Scholar 

  • Carter, L. (2008). Globalisation and science education: The implications of science in the new economy. Journal of Research in Science Teaching, 45(5), 617–633.

    Article  Google Scholar 

  • Chinn, C. A., & Malhotra, B. A. (2002). Epistemologically authentic inquiry in schools: A theoretical framework for evaluating inquiry tasks. Science Education, 86(2), 175–218.

    Article  Google Scholar 

  • Cho, M., Shohara, R., Schissel, A., & Rennie, D. (2000). Policies on faculty conflicts of interest at U. S. universities. S, 284, 2203–2208.

    Google Scholar 

  • Council of Ministers of Education, Canada. (1997). Common framework of science learning outcomes K–12. Ottawa: Author.

    Google Scholar 

  • Crawford, B. A. (2007). Learning to teach science asinquiry in the rough and tumble of practice. Journal of Research in Science Teaching, 44(4), 613–642.

    Article  Google Scholar 

  • Dzisah, J. (2007). Institutional transformations in the regime of knowledge production: The university as a catalyst for the science-based knowledge economy. Asian Journal of Social Science, 35(1), 126–140.

    Article  Google Scholar 

  • Etzkowitz, H. (2003). Innovation in innovation: The triple helix of university-industry-government relations. Social Science Information, 42(3), 293–337.

    Article  Google Scholar 

  • Etzkowitz, H., & Leydesdorff, L. (2000). The dynamics of innovation: From national systems and “Mode 2” to a triple helix of university–industry–government relations. Research Policy, 29(2), 109–123.

    Article  Google Scholar 

  • Fensham, P. J. (1993). Academic influence on school science curricula. Journal of Curriculum Studies, 25(1), 53–64.

    Article  Google Scholar 

  • Foucault, M. (1991). Governmentality. In G. Burchell, C. Gordon, & P. Miller (Eds.), The Foucault effect: Studies in governmentality (pp. 87–104). Hemel Hempstead, UK: Harvester Wheatsheaf.

    Google Scholar 

  • Gabbard, D. A. (2000). Introduction. In D. A. Gabbard (Ed.), Knowledge and power in the global economy: Politics and the rhetoric of school reform (pp. xiii–xxiii). Mahwah, NJ: Lawrence-Erlbaum.

    Google Scholar 

  • Gibbons, M., Limognes, C., Nowotny, H., Schwartzman, S., Scott, P., & Trow, M. (1994). The new production of knowledge: The dynamics of science and research in contemporary societies. London: Sage.

    Google Scholar 

  • Glantz, S. A., Slade, J., Bero, L. A., Hanauer, P., & Barnes, D. E. (1996). The cigarette papers. Berkeley, CA: University of California Press.

    Google Scholar 

  • Goldstein, H., & Hira, R. (2004). R&D 100. IEEE Spectrum, 41(11), 61–65.

    Article  Google Scholar 

  • Greenberg, D. (2003). Conference deplores corporate influence on academic science. The Lancet, 362, 302–303.

    Article  Google Scholar 

  • Guston, D. H. (2000). Between politics and science: Assuring the integrity and productivity of research. New York: Cambridge University Press.

    Book  Google Scholar 

  • Habermas, J. (1972). Knowledge and human interest (J. J. Shapiro, Trans.). London: Heinemann (Original work published 1968).

  • Hellström, T., & Raman, S. (2001). The commodification of knowledge about knowledge: Knowledge management and the reification of epistemology. Social Epistemology, 15(3), 139–154.

    Article  Google Scholar 

  • Hileman, B. (1998). Industry’s privacy rights: Is science shortchanged? Chemical & Engineering News, 76, 36.

    Article  Google Scholar 

  • Hodson, D. (1998). Science fiction: The continuing misrepresentation of science in the school curriculum. Curriculum Studies, 6(2), 191–216.

    Article  Google Scholar 

  • Hodson, D. (2003). Time for action: Science education for an alternative future. International Journal of Science Education, 25(6), 645–670.

    Article  Google Scholar 

  • Hurd, P. D. (2002). Modernizing science education. Journal of Research in Science Teaching, 39(1), 3–9.

    Article  Google Scholar 

  • Johnson, S. K., & Stewart, J. (1990). Using philosophy of science in curriculum development: An example from high school genetics. International Journal of Science Education, 12(3), 297–307.

    Article  Google Scholar 

  • Kellogg, D. (2006). Toward a post-academic science policy: Scientific communication and the collapse of the Mertonian norms. International Journal of Communications Law & Policy, 11, 1–29.

    Article  Google Scholar 

  • Kitcher, P. (2001). Science, truth, and democracy. New York: Oxford University Press.

    Book  Google Scholar 

  • Krimsky, S. (2003). Science in the private interest: Has the lure of profits corrupted biomedical research? Lanham, MD: Rowman & Littlefield.

    Google Scholar 

  • Larner, W. (2000). Neo-liberalism: Policy, ideology, governmentality. Studies in Political Economy, 63, 5–26.

    Article  Google Scholar 

  • Lederman, N. G. (2006). Syntax of nature of science within inquiry and science instruction. In L. B. Flick & N. G. Lederman (Eds.), Scientific inquiry and nature of science: Implications for teaching, learning, and teacher education (pp. 301–318). Dordrecht: Springer.

    Google Scholar 

  • Martin, B. (1992). Science for non-violent struggle. Science and Public Policy, 19, 55–58.

    Google Scholar 

  • Martin, B. (1999). Suppressing research data: Methods, context, accountability, and responses. Accountability in Research, 6(4), 333–372.

    Article  Google Scholar 

  • McLaren, P., & Jaramillo, N. (2007). Pedagogy and praxis in the age of empire: Towards a new humanism. Rotterdam: Sense.

    Google Scholar 

  • McMurtry, J. (1999). The cancer stage of capitalism. London: Pluto.

    Google Scholar 

  • Merton, R. (1942). The sociology of science. Chicago: University of Chicago Press.

    Google Scholar 

  • Merton, R. K. (1973). The normative structure of science. In R. K. Merton (Ed.), The sociology of science: Theoretical and empirical investigations (pp. 256–278). Chicago: University of Chicago Press.

    Google Scholar 

  • Merton, R. K. (1986). Social theory and social structure (3rd ed.). New York: Free Press.

    Google Scholar 

  • Merton, R. K. (1988). The MatthewEffect in science, II: Cumulative advantage and the symbolism of intellectual property. Isis, 79(299), 606–623.

    Article  Google Scholar 

  • Mirowski, P., & Van Horn, R. (2005). The contract research organization and the commercialization of scientific research. Social Studies of Science, 35(4), 503–548.

    Article  Google Scholar 

  • National Research Council. (1996). National science education standards. Washington, DC: National Academy Press.

    Google Scholar 

  • Nowotny, H., Scott, P., & Gibbons, M. (2001). Re-thinking science: Knowledge and the public in an age of uncertainty. Cambridge: Polity Press.

    Google Scholar 

  • Pachter, W. S., Fox, R. E., Zimbardo, P., & Antonuccio, D. O. (2007). Corporate funding and conflicts of interest: A primer for psychologists. American Psychologist, 62(9), 1005–1015.

    Article  Google Scholar 

  • Pearce, N. (2007). Commentary: The rise and rise of corporate epidemiology and the narrowing of epidemiology’s vision. International Journal of Epidemiology, 36(4), 713–717.

    Article  Google Scholar 

  • Pedretti, E. (2003). Teaching Science, Technology, Society and Environment (STSE) education: Preservice teachers’ philosophical and pedagogical landscapes. In D. Zeidler (Ed.), The role of moral reasoning and socioscientific discourse in science education (pp. 219–239). Dortrecht: Kluwer.

    Chapter  Google Scholar 

  • Pestre, D. (2003). Regimes of knowledge production in society: Towards a more political and social reading. Minerva, 41(3), 245–261.

    Article  Google Scholar 

  • Polanyi, M. (1941–1943). The autonomy of science. Manchester Memoirs, 85(2), 19–38.

    Google Scholar 

  • Relyea, H. C. (1994). Silencing science: National security controls and scientific communication. Norwood, NJ: Ablex.

    Google Scholar 

  • Rosenstock, L., & Lee, L. J. (2002). Attacks on science: The risks of evidence-based policy. American Journal of Public Health, 92(1), 14–19.

    Article  Google Scholar 

  • Roth, W.-M. (2001). Learning science through technological design. Journal of Research in Science Teaching, 38(7), 768–790.

    Article  Google Scholar 

  • Rudolph, J. (2005). Inquiry, instrumentalism, and the public understanding of science. Science Education, 89(5), 803–821.

    Article  Google Scholar 

  • Sadler, T. D., Barab, S. A., & Scott, B. (2007). What do students gain by engaging in socioscientific inquiry? Research in Science Education, 37(4), 371–391.

    Article  Google Scholar 

  • Smith, A. (1976). An inquiry into the nature and causes of the wealth of nations (E. Cannan, Ed.). Oxford: Oxford University Press. (Original work published 1776)

  • Triggle, D. (2005). Patenting the sun: Enclosing the scientific commons and transforming the university—Ethical concerns. Drug Development Research, 63, 139–149.

    Article  Google Scholar 

  • Turner, S. (2007). Merton’s “norms” in political and intellectual context. Journal of Classical Sociology, 7(2), 161–178.

    Article  Google Scholar 

  • Walker, K. A., & Zeidler, D. L. (2007). Promoting discourse about socioscientific issues through scaffolded inquiry. International Journal of Science Education, 29(11), 1387–1410.

    Article  Google Scholar 

  • Weber, M. (1904–1905). Die protestantische ethik und der geist des kapitalismus. Archiv fur sozialwissenschaft [The protestant ethic and the spirit of capitalism]. New York: Charles Scribner’s Sons.

    Google Scholar 

  • Weiner, T. (1990). Blank check: The Pentagon’s black budget. New York: Warner.

    Google Scholar 

  • Weinstein, J. N. (2007). Threats to scientific advancement in clinical practice. Spine, 32(11S), S58–S62.

    Article  Google Scholar 

  • Wenger, E. (1998). Communities of practice: Learning, meaning, and identity. New York: Cambridge University Press.

    Book  Google Scholar 

  • Winner, L. (1986). The whale and the reactor: A search for limits in an age of high technology. Chicago: University of Chicago Press.

    Google Scholar 

  • Winner, L. (1995). Citizen virtues in a technological order. In A. Feenberg & A. Hannay (Eds.), Technology and the politics of knowledge (pp. 65–82). Bloomington, IN: Indiana University Press.

    Google Scholar 

  • Wood, E. M. (2005). Empire of capital (2nd ed.). London: Verso.

    Google Scholar 

  • Ziman, J. (2000). Real science: What it is, and what it means. Cambridge: Cambridge University Press.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Lawrence Bencze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bencze, J.L. Private Profit, Science, and Science Education: Critical Problems and Possibilities for Action. Can J Sci Math Techn 8, 297–312 (2008). https://doi.org/10.1080/14926150802506290

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14926150802506290

Navigation