Skip to main content

Advertisement

Log in

Identifying Strategies to Support Junior Secondary Students to Engage in Scientific Investigation Tasks

  • Published:
Canadian Journal of Science, Mathematics and Technology Education Aims and scope Submit manuscript

Abstract

This article describes the outcome of a collaborative project between the Hong Kong Institute of Education and four secondary schools that aims to promote the development of scientific investigation skills. The project team designed scientific investigation tasks collaboratively with the teachers and provided school-based support when the tasks were implemented. A total of six teachers and 575 students were involved. Data were collected through questionnaires completed by the students and individual interviews with science teachers about their classroom practice after the completion of the project. The findings suggest that the students did not meet many difficulties and that there were positive influences on students’ interest in learning science. The teachers perceived that there were challenges related to raising students’ self-regulated learning abilities, structuring tasks that were at appropriate levels of difficulty, and promoting group cooperation among the students. Finally, the article argues that the strategies implemented in this study were effective, though it takes much time and effort to help students develop self-regulated learning abilities. The conclusion suggests that teachers consider these challenges collectively and proposes a two-staged model for planning scientific investigation tasks.

Résumé

Cet article présente les résultats d’un projet réalisé par le Hong Kong Institute of Education, en collaboration avec quatre écoles secondaires, dont le but était de promouvoir l’acquisition d’habiletés dans le domaine de l’investigation scientifique L’équipe responsable du projet, de concert avec les enseignants, a élaboré une série de tâches d’investigation scientifique et a également fourni un soutien à l’école lors de la mise en application de ces différentes tâches. En tout, six professeurs et 575 élèves ont participé au projet. Au terme du projet, les données ont été recueillies d’une part au moyen de questionnaires distribués aux étudiants et, d’autre part, au moyen d’entrevues individuelles avec les enseignants de sciences au sujet de leurs pratiques d’enseignement. Les résultats indiquent que les élèves n’ont éprouvé aucune difficulté particulière et que le projet a eu des effets positifs sur leur intérêt pour l’apprentissage des sciences en général. Quant aux enseignants, ils ont pu cerner les défis qu’il leur fallait relever pour améliorer les habiletés d’apprentissage autonome de leurs élèves, pour structurer des tâches d’investigation dont le niveau de difficulté est adéquat et pour promouvoir la coopération et le travail en groupe. Enfin, l’article montre que les stratégies adoptées dans le cadre de cette étude sont efficaces, mais qu’elles impliquent des efforts et un temps considérables si l’on veut favoriser le développement d’habiletés d’apprentissage autonome chez les élèves. En conclusion, l’article, qui propose que les enseignants se penchent collectivement sur ces questions, présente un modèle à deux étapes pour la planification générale des tâches d’investigation scientifique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ACT Department of Education and Community Services (2000). Curriculum profiles for Australian schools. Canberra, Australia: Curriculum profiles for Australian schools.

    Google Scholar 

  • Alao, S., & Guthrie, J. T. (1999). Predicting Conceptual Understanding with Cognitive and Motivational Variables. Journal of Educational Research, 92(4), 243–54.

    Article  Google Scholar 

  • Ames, C. (1992). Achievement goals and the classroom motivational climate. In D. H. Schunk & J. L. Meece (Eds.), Student perceptions in the classroom (pp. 327–348). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Arisawa, S., & Tsukimoto, K. (1998). Free study handbook. Tokyo: Fukuinkan Shoten Publishers.

    Google Scholar 

  • Baldwin, R. S., Peleg-Bruckner, Z., & McClintock, A. H. (1985). Effects of Topic Interest and Prior Knowledge on Reading Comprehension. Reading Research Quarterly, 20(4), 497–504.

    Article  Google Scholar 

  • Bame, A., & Booth, R. (2000). Design problem solving: The signature of technology education. In G. E. Martin (Ed.), Technology education for the 21st century: A collection of essays (pp. 21–32). New York: Glencoe/McGraw Hill.

    Google Scholar 

  • Bachta, L. M. (2001). Concrete inquiry. The Science Teacher, 68(1), 40–48.

    Google Scholar 

  • Bandura, A. (1997). Self-efficacy: The exercise of control. New York: W. H. Freeman.

    Google Scholar 

  • Brown, D. C., & Clement, J. (1989). Overcoming misconceptions by analogical reasoning: Abstract transfer versus explanatory model construction. Instructional Science, 18, 237–261.

    Article  Google Scholar 

  • Brown, D. E. (1992). Using examples and analogies to remediate misconceptions in physics: Factors influencing conceptual change. Journal for Research in Science Teaching, 29, 17–34.

    Article  Google Scholar 

  • Burghardt, M. D., & Hacker, M. (2004). Informed design: A contemporary approach to design pedagogy as the core process in technology. The Technology Teacher, 64, 6–8.

    Google Scholar 

  • Bybee, R. W. (2000). Teaching science as inquiry. In J. Minstrell & H.v.Z. Emily, Inquiring into inquiry learning and teaching in science (pp. 21–46). Washington, DC: American Association for the Advancement of Science.

    Google Scholar 

  • Chambers, S. K., & Andre, T. (1997). Gender, Prior Knowledge, Interest, and Experience in Electricity and Conceptual Change Text Manipulations in Learning about Direct Current. Journal of Research in Science Teaching, 34(2), 107–23.

    Article  Google Scholar 

  • Chin, C. (2003). Success with investigations. The Science Teacher, 70, 34–40.

    Google Scholar 

  • Cohen, E. G. (1994). Restructuring the classroom: Conditions for productive small groups. Review of Educational Research, 64, 1–35.

    Article  Google Scholar 

  • Cohen, L., & Manion, L. (1994). Research methods in education London: Routledge.

    Google Scholar 

  • Colvill, M., & Pattie, I. (2002). Science skills—The building blocks. Investigating, 18(4), 27–30.

    Google Scholar 

  • Conner, L. N. (2004). Teaching values through the process of facilitation. Pacific Asian Education, 16(2), 65–80.

    Google Scholar 

  • Costa, A. (1991). Mediating the metacognitive. In A. L. Costa (Ed.), Developing minds: A resource book for teaching Vol. 1, pp. 211–214. Alexandria, VA: Association for Supervision and Curriculum Development.

    Google Scholar 

  • Council of Ministers of Education, Canada. (1997). Common framework of science learning outcomes. Retrieved February 13, 2007, from http://www.cmec.ca

    Google Scholar 

  • Crossland, J. (1998). Teaching for progression in experimental and investigative science. Primary Science Review, 53, 18–20.

    Google Scholar 

  • Curriculum Development Council. (2002). Science education, key learning area curriculum guide (Primary 1–Secondary 3). Hong Kong: The Curriculum Development Council.

    Google Scholar 

  • Cuseo, J. (1992). Cooperative learning vs small-group discussions and group projects: The critical difference. Cooperative Learning and College Teaching, 2(3), 5–10.

    Google Scholar 

  • Dawson, V., & Venville, G. (2006). An overview and comparison of Australian State and Territory K–10 science curriculum documents. Teaching Science, 52(2), 17–24.

    Google Scholar 

  • Department of Education and Science and the Welsh Office. (1989). Science in the national curriculum. London: Her Majesty’s Stationary Office (HMSO).

    Google Scholar 

  • Donnelly, J. F. (1987). Fifteen-Year-Old Pupils’ Variable Handling Performance in the Context of Scientific Investigations. Research in Science and Technological Education, 5, 135–147.

    Article  Google Scholar 

  • Donelly, J. (1998). The place of the laboratory in secondary science teaching. International Journal of Science Education, 20, 585–596.

    Article  Google Scholar 

  • Drever, E. (1995). Using semi-structured interviews in small scale research: A teachers’ guide. Edinburgh: Scottish Council for Research in Education (SCRE).

    Google Scholar 

  • Duggan, S., Johnson, P., & Gott, R. (1996). A critical point in investigative work: Defining variables. Journal of Research in Science Teaching, 33, 461–474.

    Article  Google Scholar 

  • Ebenezer, J. V., & Zoller, U. (1993). Grade 10 Students’ Perceptions of and Attitudes toward Science Teaching and School Science. Journal of Research in Science Teaching, 30(2), 175–86.

    Article  Google Scholar 

  • Fitzgerald, M. A., & Byers, A. (2002). A rubric for selecting inquiry-based activities. Science Scope, 26, 22–25.

    Google Scholar 

  • Goldsworthy, A., & Feasey, R. (1997). Making sense of primary science investigations. Hatfield, England: Association for Science Education.

    Google Scholar 

  • Gott, R., & Duggan, S. (1995). Investigative work in the science curriculum. Buckingham: Open University Press.

    Google Scholar 

  • Hackling, M. W., & Fairbrother, R. W. (1996). Helping students to do open investigations in science. Australian Science Teachers Journal, 42, 26–33.

    Google Scholar 

  • Hackling, M. W., & Garnett, P. J. (1995). The development of expertise in science investigation skills. Australian Science Teachers Journal, 41(4), 80–86.

    Google Scholar 

  • Haigh, M., & Hubbard, D. (1997). “I really know I have learned something”: Investigative work in science education. In B. Bell and R. Baker, Developing the science curriculum in Aotearoa New Zealand, 53–65, New Zealand: Addison Wesley Longman.

    Google Scholar 

  • Hodson, D.(1996). Laboratory workasscientific method: three decadesofconfusion and distortion. Journal of Curriculum Studies, 28(2), 115–135.

    Article  Google Scholar 

  • Hofstein, A., & Lunetta, V. N. (2004). The laboratory in science education: Foundation for the 21st. century. Science Education, 88, 28–54.

    Article  Google Scholar 

  • Johnson, D. W., & Johnson, F. P. (2002). Joining together: Group theory and group skills. Boston: Allyn & Bacon.

    Google Scholar 

  • Kreke, K., Fields, A., & Towns, M. H. (1998, April). An action research project on student perspectives of cooperative learning in chemistry: Understanding the efficacy of small-group activities. Paper presented at the Annual Meeting of the National Association for Research in Science Teaching, San Diego, CA.

    Google Scholar 

  • Laase, L., & Clemmons, J. (1998). Helping students write the best research reports ever. New York, New York: Scholastic Press.

    Google Scholar 

  • Lewis, T. (2006). Design and inquiry: Base for an accommodation between science and technology education in the curriculum? Journal of Research in Science Teaching, 43, 255–281.

    Article  Google Scholar 

  • Lotan, R. A., Cohen, E. G., & Holthusi, N. C. (1994). Talking and working together: Conditions for learning in complex instruction. Paper presented to Annual Meeting of American Educational Research Association, New Orleans, LA, April 4–8, 1994.

    Google Scholar 

  • Mertens, D. M. (1998). Research methods in education and psychology: Integrating diversity with quantitative and qualitative approaches. London: Sage.

    Google Scholar 

  • Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis. Thousand Oaks, CA: Sage.

    Google Scholar 

  • Minstrell, J., & van Zee, E. H. (2000). Inquiring into inquiry learning and teaching in science. Washington, DC: American Association for the Advancement of Science.

    Google Scholar 

  • National Research Council. (1996). National science education standards. Washington, DC: National Academic Press.

    Google Scholar 

  • National Research Council. (2000). Inquiry and the national science education standards. Washington, DC: National Academy Press.

    Google Scholar 

  • Palincsar, A. S., Anderson, C., & David, Y. M. (1993). Pursuing scientific literacy in the middle grades through collaborative problem solving. Elementary School Journal, 93, 643–658.

    Article  Google Scholar 

  • Sawyer, K. R. (2004). Creative teaching: Collaborative discussion as discipline improvisation. Educational Researcher, 33(2), 12–20.

    Article  Google Scholar 

  • Schunk, D. H. (1994). Self-regulation of self-efficacy and attributions in academic setting. In D. H. Schunk & B. J. Zimmerman (Eds.), Self-regulation of learning and performance (pp. 75–100). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Solano-Flores, G., & Shavelson, R. J. (1997). Development of performance assessments in science: Conceptual, practical, and logistical issues. Educational Measurement: Issues and Practice, 16(13), 16–25.

    Google Scholar 

  • Stavy, R., & Berkovitz, B. (1980). Cognitive conflict a basis for teaching quantitative aspectsof the concept of temperature. Science Education, 64, 679–692.

    Article  Google Scholar 

  • The Chinese University of Hong Kong. (2003). The first HKPISA report. Hong Kong: The Hong Kong Institute of Educational Research.

    Google Scholar 

  • Warner, S. A. (2003). Teaching design: Taking the first steps. The Technology Teacher, 62, 7–10.

    Google Scholar 

  • Watson, S. B. (1991). Cooperative learning and group education modules: Effects on cognitive achievement of high school biology students. Journal of Research in Science Teaching, 28, 141–146.

    Article  Google Scholar 

  • Webb, N. M., & Palincsar, A. S. (1996). Group processes in the classroom. In D. C. Berliner & R. C. Calfee (Eds.), Handbook of educational psychology (pp. 841–873). New York: Macmillan.

    Google Scholar 

  • Webb, N. M., Troper, J. D., & Fall, R. (1995). Constructive activity and learning in collaborative small groups. Journal of Educational Psychology, 87, 406–423.

    Article  Google Scholar 

  • Yager, S., Johnson, D. W., & Johnson, R. T. (1985). Oral discussion, group-to-individual transfer, and achievement in cooperative learning groups. Journal of Educational Psychology, 77, 60–66.

    Article  Google Scholar 

  • Zimmerman, B. J. (2000). Attaining self-regulation: A social cognitive perspective. In M. Boekarts, P. Pintrich, & M. Zeidner (Eds.), Self-regulation: Theory, research and applications (pp. 13–39). Orlando, FL: Academic.

    Chapter  Google Scholar 

  • Zimmerman, B. J., & Bandura, A. (1994). Impact of self-regulatory influences on writing course attainment. American Educational Research Journal, 31, 845–862.

    Article  Google Scholar 

  • Zimmerman, B. J., & Kitsantas, A. (1997). Development phases in self-regulation: Shifting from process goals to outcome goals. Journal of Educational Psychology, 89, 29–36.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to May May-hung Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, M.Mh. Identifying Strategies to Support Junior Secondary Students to Engage in Scientific Investigation Tasks. Can J Sci Math Techn 8, 99–120 (2008). https://doi.org/10.1080/14926150802169222

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14926150802169222

Navigation