Skip to main content

Advertisement

Log in

A Study of Teachers’ Perspectives About Using Multimodal Representations of Concepts to Enhance Science Learning

  • Published:
Canadian Journal of Science, Mathematics and Technology Education Aims and scope Submit manuscript

Abstract

This article reports on initial findings of a study that aims to devise, trial, and evaluate teaching and learning strategies to improve students’ learning of science in the middle years in schools in regional Australia through a focus on multiple and multimodal representations of science concepts. Initially, 20 teachers were surveyed about their planning and usage of different representational modes. These teachers tended to focus on resources and students’ learning styles rather than modal variation, sometimes confusing modes and resources. Few teachers expected students to be able to represent the same concept in different modes as part of understanding science. In this article we report in detail the beliefs and practices of two elementary teachers in the survey who focused on the value of representational diversity in learning science. In analyzing their beliefs and practices we identified some key implementation issues in pursuing this multimodal focus.

Résumé

Cet article rend compte des premiers résultats d’une étude visant à mettre au point, à tester et à é valuer les stratégies d’enseignement et d’apprentissage afin d’améliorer l’apprentissage des sciences chez les élèves du premier cycle du secondaire dans les écoles régionales australiennes, grâce à une attention toute particulière pour les représentations multimodales et multiples des concepts scientifiques. Au début de l’étude, 20 enseignants ont fait l’objet d’une enquête sur les façons dont ils planifiaient et utilisaient les différents modes représentationnels. Ces enseignants tendaient à se concentrer sur les ressources et les styles d’apprentissage des étudiants plutôt que sur les variations modales, et confondaient parfois les modes et les ressources. Peu d’enseignants s’attendaient à ce que les élèves soient en mesure de représenter le même concept en se servant de différentes modalités. Dans cet article, nous présentons en détail les convictions et pratiques de deux enseignants au niveau élémentaire ayant participé à l’enquête, lesquels ont centré leur attention sur la valeur de la diversité représentationnelle en apprentissage des sciences. Dans notre analyse, nous avons déterminé la portée de certaines questions clés en matière de représentations multimodales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ainsworth, S. (1999). The functions of multiple representations. Computers & Education, 33, 131–152.

    Article  Google Scholar 

  • Ainsworth, S., & Iacovides, I. (2005, August). Learning by constructing self-explanation diagrams. Paper presented at the 11th Biennial Conference of European Association for Research on Learning and Instruction, Nicosia, Cypress.

    Google Scholar 

  • Australian Academy of Science. (2005). PrimaryConnections. Retrieved from http://www.science.org.au/ Professional Learning programme primaryconnections.

    Google Scholar 

  • Berns, R., & Erickson, P. (2001, December). A Web-based professional development system in contextual teaching and learning. Paper presented at the Association for Career and Technical Education, Annual Meeting, New Orleans, Louisiana.

    Google Scholar 

  • Coll, R. K., & Treagust, D. F. (2000, July). Learners’ mental models of metallic bonding: A cross-age study. Paper presented at the Annual Meeting of the Australasia Science Education Research Association, Fremantle, Australia.

    Google Scholar 

  • Creswell, J. W., Tashakkori, A., Jensen, K. D., & Shapley, K. L. (2003). Teaching mixed methods research: Practices, dilemmas and challenges. In A. Tashakkori & C. Teddlie (Eds.), Handbook of mixed methods in social & behavioral research (pp. 619–638). Thousand Oaks, CA: Sage.

    Google Scholar 

  • Denzin, N., & Lincoln, Y. (1994). The handbook of qualitative research in education. Newbury Park, CA: Sage.

    Google Scholar 

  • Dolin, J. (2001). Representational forms in physics. In D. Psillos, P. Kariotoglou, V. Tselfes, G. Bisdikian, G. Fassoulopoulos, E. Hatzikraniotis, et al (Eds.). Science education research in the knowledge-based society. Proceedings of the Third International Conference of the ESERA (pp. 359–361). Thessaloniki, Greece: Aristotle University of Thessaloniki.

    Google Scholar 

  • Driver, R., Squires, A., Rushworth, P., & Wood-Robinson, V. (1994). Making sense of secondary science: Research into children’s ideas. London: Routledge.

    Google Scholar 

  • Etkina, E. (2000). Weekly reports: A two-way feedback tool. Science Education, 84(5), 594–605.

    Article  Google Scholar 

  • Florax, M., & Ploetzner, R. (2005, August). Effects of active integration of texts and visualization in learning. Paper presented at the 11th Biennial Conference of European Association for Research on Learning and Instruction, Nicosia, Cypress.

    Google Scholar 

  • Gee, J. (1996). Social linguistics and literacies: Ideologies in discourse (2nd ed.). London: Taylor & Francis.

    Google Scholar 

  • Gobert, J., & Clement, J. (1999). The effects of student-generated diagrams versus student-generated summaries on conceptual understanding of spatial, causal and dynamic knowledge in plate tectonics. Journal of Research in Science Education, 36, 39–53.

    Google Scholar 

  • Gough, A., Beeson, G., Tytler, R., Waldrip, B., & Sharpley, B. (2002). Improving effective science teaching and learning in Australian schools. Paper presented at the Annual Meeting of the National Association for Research in Science Teaching, New Orleans. April.

    Google Scholar 

  • Halliday, M., & Martin, J. (1993). Writing science: Literacy and discursive power. London: Falmer Press.

    Google Scholar 

  • Hand, B., Alvermann, D., Gee, J., Guzzetti, B., Norris, S., Phillips, L., et al. (2003). Message from the “Island Group”: What is literacy in science literacy? Journal of Research in Science Teaching, 40, 607–615.

    Article  Google Scholar 

  • Jewitt, C., & Kress, G. (Eds.). (2003). Multi-modal literacy. New York: Peter Lang.

    Google Scholar 

  • Karmiloff-Smith, A. (1992). Beyond modularity. A developmental perspective on cognitive science. Boston: MIT Press.

    Google Scholar 

  • Klein, P. D. (2003). Rethinking the multiplicity of cognitive resources and curricular representations: Alternatives to “learning styles” and “multiple intelligences.” Journal of Curriculum Studies, 35, 45–81.

    Article  Google Scholar 

  • Kress, G., Jewitt, C., Ogborn, J., & Tsatsarelis, C. (2001). Multi-modal teaching and learning: The rhetorics of the science classroom. London, UK: Continuum.

    Google Scholar 

  • Lemke, J. (1998). Multiplying meaning: Visual and verbal semiotics in scientific text. In J. Martin & R. Veel (Eds.), Reading science. Critical and functional perspectives on discourses of science (pp. 87–113). London: Routledge.

    Google Scholar 

  • Lemke, J. (2003). Teaching all the languages of science: Words, symbols, images, and actions. Retrieved from http://www-personal.umich.edu/~jaylemke/papers/barcelon.htm

    Google Scholar 

  • Lemke, J. (2004). The literacies of science. In E. W. Saul (Ed.), Crossing borders in literacy and science instruction: Perspectives on theory and practice (pp. 33–47). Arlington, VA: International Reading Association/National Science Teachers Association.

    Google Scholar 

  • Merriam, S. (1998). Qualitative research and case study applications in education (2nd ed.). San Francisco: Jossey-Bass.

    Google Scholar 

  • Norris, S. P., & Phillips, L. M. (2003). How literacy in its fundamental sense is central to scientific literacy. Science Education, 87, 224–240.

    Article  Google Scholar 

  • Nuthall, G. (1999). The way students learn. The Elementary School Journal, 99, 303.

    Article  Google Scholar 

  • Ogborn, J., Kress, G., Martins, I., & McGillicuddy, K. (1996). Explaining science in the classroom. Buckingham, UK: Open University Press.

    Google Scholar 

  • O’Toole, M. (1999). Literacy and science in the primary school. Theory and practice. Investigating, 15(1), 20–23.

    Google Scholar 

  • Paivio, A. (1986). Mental representations: A dual-coding approach. New York: Oxford University Press.

    Google Scholar 

  • Parnafes, O. (2005, August). Constructing coherent understanding of physical concepts through the interpretation of multiple representations. Paper presented at the 11th Biennial Conference of European Association for Research on Learning and Instruction, Nicosia, Cypress.

    Google Scholar 

  • Prain, V., & Waldrip, B. (2006). An Exploratory study of teachers’ and students’ use of multi-modal representations of concepts in primary science. International Journal of Science Education, 28(15), 1843–1866.

    Article  Google Scholar 

  • Reimann, P. (1999). The role of external representations in distributed problem solving. Learning and Instruction, 9(4), 411–418.

    Article  Google Scholar 

  • Russell, T., & McGuigan, L. (2001). Promoting understanding through representational redescription: An illustration referringtoyoung pupils’ ideas about gravity. In D. Psillos, P. Kariotoglou, V. Tselfes, G. Bisdikian, G. Fassoulopoulos, E. Hatzikraniotis, et al. (Eds.), Science education research in the knowledge-based society. Proceedings of the Third International Conference of the ESERA (pp. 600–602). Thessaloniki, Greece: Aristotle University of Thessaloniki.

    Google Scholar 

  • Saul, W. (Ed.). (2004). Crossing borders in literacy and science instruction: Perspectives on theory and practice. Newark, DE: International Reading Association and National Science Teachers Association.

    Google Scholar 

  • Treagust, D., Chittelborough, G., & Mamiala, T. (2002). Students’ understanding of the role of scientific models in learning science. International Journal of Science Education, 24(4), 357–368.

    Article  Google Scholar 

  • Tytler, R. (2003). A window for a purpose: Developing a framework for describing effective science teaching and learning. Research in Science Education, 33, 273–298.

    Article  Google Scholar 

  • Tytler, R., Peterson, S., & Prain, V. (2006). Picturing evaporation: Learning science literacy through a particle representation. Teaching Science, 52(1), 12–17.

    Google Scholar 

  • Tylter, R., Waldrip, B., & Griffiths, M. (2004). Windows into practice: Constructing effective science teaching and learning in a school change initiative. International Journal of Science Education, 26(2), 171–194.

    Article  Google Scholar 

  • Volkmann, M. J., & Abell, S. K. (2003). Seamless assessment. Science and Children, 40(8), 41–45.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaughan Prain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prain, V., Waldrip, B. A Study of Teachers’ Perspectives About Using Multimodal Representations of Concepts to Enhance Science Learning. Can J Sci Math Techn 8, 5–24 (2008). https://doi.org/10.1080/14926150802152152

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14926150802152152

Navigation