Skip to main content
Log in

Implementing Knowledge Building: Analysis of a Face-to-Face Discussion by Grade-Four Students

  • Article
  • Published:
Canadian Journal of Science, Mathematics and Technology Education Aims and scope Submit manuscript

Abstract

Researchers say that teachers can implement an educational innovation without adhering to the principles underpinning its design. Such principles may not adequately take typical classroom conditions into account. The goal of this study was to explore tensions between attempts to implement the principles underpinning knowledge building and the influence of contextual factors that compete for the teacher’s attention. To this end, we discuss five excerpts from a discussion of the motion of spinning tops held by a class of Grade-4 students, coming at the end of a five-month implementation of knowledge building. Each excerpt is followed first by the teacher’s perspective and then by the researcher’s perspective. Our analysis highlights two tensions that constrain agency, arising from the students’ need for social development and their need to learn scientific concepts. We offer some suggestions for addressing these tensions.

Résumé

Les chercheurs affirment que les enseignants sont en mesure de mettre en pratique certaines innovations pédagogiques sans nécessairement adhérer aux principes qui sous-tendent leur conception. Toutefois, il arrive que ces principes ne tiennent pas suffisamment compte des conditions typiques d’une salle de classe. L’objectif ce cette étude est d’analyser les tensions qui existent entre l’application de principes qui sous-tendent l’acquisition des connaissances et les différents facteurs contextuels susceptibles de détourner l’attention de l’enseignant. À cette fin, nous nous penchons sur cinq extraits tirés d’une discussion en classe portant sur le mouvement des toupies, discussion tenue par une classe de quatrième année, au terme d’une période de cinq mois d’acquisition des connaissances. Chaque extrait est suivi d’abord d’un commentaire de la part de l’enseignant, puis d’un second commentaire exprimant l’avis des chercheurs. Notre analyse met en évidence deux forces de tension qui ont des effets contraignants sur l’agir, découlant des besoins de développement social des étudiants et de la nécessité d’apprentissage les concepts scientifiques. Nous suggérons ensuite certaines pistes pour affronter ces tensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bransford, J.D., Brown, A.L., & Cocking, R.R. (1999). How people learn: Brain, mind, experience, and school. Washington, DC: National Academy Press.

    Google Scholar 

  • Bereiter, C. (2002). Education and mind in the knowledge age. Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Bereiter, C., & Scardamalia, M. (1987a). The psychology of written composition. Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Bereiter, C., & Scardamalia, M. (1987b). An attainable version of high literacy: Approaches to teaching higher-order skills in reading and writing. Curriculum Inquiry, 17, 9–30.

    Article  Google Scholar 

  • Bereiter, C., & Scardamalia, M. (1993). Surpassing ourselves: An inquiry into the nature and implications of expertise. Chicago: Open Court.

    Google Scholar 

  • Brown, A.L., & Campione, J.C. (1990). Communities of learning and thinking, or a context by any other name. Contributions to Human Development, 21, 108–126.

    Article  Google Scholar 

  • Brown, A.L., & Campione, J.C. (1996). Psychological theory and the design of innovative learning environments: On procedures, principles, and systems. In L. Schauble & R. Glaser (Eds.), Innovations in learning: New environments for education (pp. 289–325). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Chan, C.K.K., Burtis, J., & Bereiter, C. (1997). Knowledge building as a mediator of conflict in conceptual change. Cognition and Instruction, 15, 1–40.

    Article  Google Scholar 

  • Chan, C.K.K., & van Aalst, J. (2004). Learning, assessment, and collaboration in computer-supported environments. In J.-W. Strijbos, P.A. Kirschner, and R. Martens (Eds.), What we know about CSCL: And implementing it in higher education (pp. 87–112). Dordrecht, The Netherlands: Kluwer Academic.

    Chapter  Google Scholar 

  • Cognition and Technology Group at Vanderbilt. (1992). The Jasper series: A generative approach to mathematical thinking. In K. Sheingold, L.G. Roberts, & S.M. Malcolm (Eds.), This year in science series 1991: Technology for teaching and learning (pp. 108–140). Washington, DC: American Association for the Advancement of the Sciences.

    Google Scholar 

  • Collins, A., Joseph, D., & Bielaczyc, K. (2004). Design research: Theoretical and methodological issues. Journal of the Learning Sciences, 13, 15–42.

    Article  Google Scholar 

  • Cummings, M. (1998). Learning in Elementary Science: ‘Hunkering’ by the Light of Children. Unpublished master’s thesis, Simon Fraser University, Burnaby, BC.

    Google Scholar 

  • Design-Based Research Collective. (2003). Design-based research: An emerging paradigm for educational inquiry. Educational Researcher, 32, 5–8.

    Article  Google Scholar 

  • Edelson, D.C., Pea, R.D., & Gomez, L.M. (1996). The collaboratory notebook: Support for collaborative inquiry. Communications of the ACM, 39, 32–33.

    Article  Google Scholar 

  • Edelson, D.C., Gordin, D.N., & Pea, R.D. (1999). Addressing the challenges of inquiry-based learning through technology and curriculum design. Journal of the Learning Sciences, 8(3&4), 391–450.

    Article  Google Scholar 

  • Fullan, M. (2003). Change forces with a vengeance. New York, NY: RoutledgeFalmer.

    Book  Google Scholar 

  • Goldberg, F., & Bendall, S. (1995). Making the invisible visible: A teaching/learning environment that builds on a new view of the physics learner. American Journal of Physics, 63, 978–991.

    Article  Google Scholar 

  • Gunstone, R.F., Gray, C.M.R., & Searle, P. (1992). Some long-term effects of uninformed conceptual change. Science Education, 76(2), 175–197.

    Article  Google Scholar 

  • Hake, R.R. (1998). Interactive-engagement versus traditional methods: A six-thousand-student survey of mechanics test data for introductory physics courses. American Journal of Physics, 66, 64–74.

    Article  Google Scholar 

  • Hakkarainen, K., Lipponen, L. & Järvelä, S. (2002). Epistemology of inquiry and computer-supported collaborative learning. In T. Koschmann, R. Hall, & N. Miyake (Eds.), CSCL 2: Carrying forward the conversation (pp. 11–41). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Hargreaves, A., Earl, L., Moore, S., & Manning, S. (2001). The intellectual work of change. In Learning to change: Teaching beyond subjects and standards (pp. 115–135). New York, NY: John Wiley.

    Google Scholar 

  • Hodson, D. (1996). Laboratory work as scientific method: Three decades of confusion and distortion. Journal of Curriculum Studies, 28, 115–135.

    Article  Google Scholar 

  • King, P.M., & Kitchener, K.S. (1994). Developing reflective judgment: Understanding and promoting intellectual growth and critical thinking in adolescents and adults. San Francisco, CA: Jossey-Bass.

    Google Scholar 

  • Latour, B. (1987). Science in action: How to follow engineers and scientists through society. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Lee, E.Y.C., Chan, C.K.K., & van Aalst, J. (2006). Students assessing their own collaborative knowledge building. International Journal of Computer-Supported Collaborative Learning, 1, 277–307.

    Article  Google Scholar 

  • Lemke, J.L. (1990). Talking science: Language, learning and values. Norwood, NJ: Ablex.

    Google Scholar 

  • Linn, M.C., & Hsi, S. (2000). Computers, teachers, peers: Science learning partners. Mahwah, NJ: Lawrence Erlbaum.

    Book  Google Scholar 

  • Mehan, H. (1979). Learning lessons. Cambridge, MA: Harvard University Press.

    Book  Google Scholar 

  • National Research Council. (1996). National science education standards. Washington, DC: National Academic Press.

    Google Scholar 

  • O’Neill, D.K. (2001). Knowing when you’ve brought them in: Scientific genre knowledge and communities of practice. Journal of the Learning Sciences, 10, 223–264.

    Article  Google Scholar 

  • Oshima, J., Scardamalia, M., & Bereiter, C. (1996). Collaborative learning processes associated with high and low conceptual progress. Instructional Science, 24, 125–155.

    Article  Google Scholar 

  • Palincsar, A.S., & Brown, A.L. (1984). Reciprocal teaching of comprehension-fostering and comprehension-monitoring strategies. Cognition and Instruction, 1, 117–175.

    Article  Google Scholar 

  • Papert, S. (1980). Mindstorms: Children, computers and powerful ideas. New York, NY: Basic.

    Google Scholar 

  • Polman, J. (2000). Designing project-based science: Connecting learners through guided inquiry. New York, NY: Teachers College Press.

    Google Scholar 

  • Roth, W.-M. (1995). Authentic science: Knowing and learning in open-inquiry science laboratories. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Scardamalia, M. (2002). Collective cognitive responsibility for the advancement of knowledge. In B. Smith (Ed.), Liberal education in a knowledge society (pp. 67–98). Chicago, IL: Open Court.

    Google Scholar 

  • Scardamalia, M., & Bereiter, C. (1991). Higher levels of agency for children in knowledge building: A challenge for the design of new knowledge media. Journal of the Learning Sciences, 1, 38–68.

    Article  Google Scholar 

  • Scardamalia, M., Bereiter, C., & Lamon, M. (1994). The CSILE project: Trying to bring the classroom into World 3. In K. McGilly (Ed.), Classroom lessons: Integrating cognitive theory and classroom practice (pp. 201–228). Cambridge, MA: MIT Press.

    Google Scholar 

  • Scardamalia, M., Bereiter, C., McLean, R.S., Swallow, J., & Woodruff, E. (1989). Computer supported intentional learning environments. Journal of Educational Computing Research, 5, 51–68.

    Article  Google Scholar 

  • Schauble, L., Glaser, R., Duschl, R.A., Schultze, S., & John, J. (1995). Students’ understanding of the objectives and procedures of experimentation in the science classroom. Journal of the Learning Sciences, 4, 131–166.

    Article  Google Scholar 

  • Sfard, A. (1998). On two metaphors for learning and the dangers of choosing one. Educational Researcher, 27, 4–13.

    Article  Google Scholar 

  • Shepard, L.E. (2000). The role of assessment in a learning culture. Educational Researcher, 29(7), 1–14.

    Article  Google Scholar 

  • Thornton, R.K., & Sokoloff, D. (1990). Learning motion concepts using real-time microcomputer-based laboratory tools. American Journal of Physics, 58, 858–867.

    Article  Google Scholar 

  • van Aalst, J. (2006). Rethinking the nature of online work in asynchronous learning networks. British Journal of Educational Technology, 37, 279–288.

    Article  Google Scholar 

  • van Aalst, J., & Hill, C.M. (2006). Activity theory as a framework for analyzing knowledge building. Learning Environments Research, 9, 23–44.

    Article  Google Scholar 

  • Wells, G. (2001). Action, talk, and text: Learning and teaching through inquiry. New York, NY: Teachers College Press.

    Google Scholar 

  • White, B.Y., & Fredericksen, J. (1998). Inquiry, modeling, and metacognition: Making science accessible to all students. Cognition and Instruction, 16, 3–118.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Aalst, J., Cummings, M. Implementing Knowledge Building: Analysis of a Face-to-Face Discussion by Grade-Four Students. Can J Sci Math Techn 6, 351–368 (2006). https://doi.org/10.1080/14926150609556710

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14926150609556710

Navigation