Skip to main content
Log in

The Historical Roots of the Limit Notion: Cognitive Development and the Development of Representation Registers

  • Article
  • Published:
Canadian Journal of Science, Mathematics and Technology Education Aims and scope Submit manuscript

Abstract

The influence upon didactics of visualization and of verbal and symbolic expressions of the main infinitesimal methods and, in particular, the importance of that influence for the correct characterization of concepts are well known. In this paper, different ideas and expressions of infinitesimal methods in history and in mathematics education are investigated, with particular reference to the limit notion. Historical development of representation registers can lead to a parallel development of the notion in students’ minds, and this should make it possible to design new ways to overcome some obstacles and to develop students’ ability to use and to coordinate different registers; however, explaining the problems encountered by mathematicians in history (who inhabited different paradigms, with different social-knowledge structures and different beliefs) does not necessarily help students with their difficulties. My main contribution resides in showing that the dynamic and the static ideas of limit arc encompassed by different semiotic registers.

Sommaire exécutif

L’analyse exhaustive d’un éventuel parallélisme entre l’histoire et la croissance cognitive exigerait une théorie spécifique de la connaissance qui permettrait de comparer la croissance de la connaissance chez les étudiants et le développement historique des concepts. De plus, il serait nécessaire d’ajouter quelques remarques sur l’efficacité et les limites d’un tel parallélisme, liées principalement à des paradigmes différents, associés à des structures sociales de connaissances et de croyances différentes, et caractérisant différentes étapes dans le développement historique des concepts. Notre principal objectif est moins ambitieux: il consiste à montrer que, du point de vue éducatif, les notions dynamiques et statiques de limites, telles que formulées à différents moments de l’histoire, font partie de registres sémiotiques différents.

L’utilisation des registres de représentation comme outil pour analyser les aspects historique et éducatif de la notion de limite est certes une piste intéressante à suivre, mais la question sur laquelle il faut se pencher est celle des liens qui pourraient exister entre les processus phylogénétiques et les processus ontogénétiques.

Le problème du passage du discret au continuum est avant tout culturel, et les questions historiques sont importantes si on veut l’analyser: elles ouvrent la possibilité de mettre au point de nouvelles façons de surmonter certains obstacles et de développer chez les étudiants des habiletés qui leur permettent d’utiliser et de coordonner différents registres. Il peut être efficace de se servir d’exemples tirés de l’histoire des mathématiques pour introduire certains concepts fondamentaux, par exemple les notions statique et dynamique de limite en référence aux registres sémiotiques utilisés; cela permet d’une part de faire une intéressante analyse a priori des difficultés des étudiants, et d’autre part de créer de nouveaux moyens de surmonter les obstacles traditionnels. Cependant, le fait d’expliquer les problèmes délicats qu’ont dû affronter les scientifiques au cours de l’histoire n’aide pas nécessairement les étudiants à surmonter leurs difficultés, car les mathématiciens du passé habitaient simplement des paradigmes différents, avec des croyances et des structures sociales de savoirs différents. De plus, il est important de tenir compte du fait qu’il n’y a pas qu’un seul registre pour un type donné: la nature même d’un registre dépend de la communauté des pratiques dont il est question. Les exemples tirés de l’histoire doivent donc être utilisés de façon contrôlée si on vise le plein apprentissage, par exemple en évaluant les détails empiriques du travail avec les étudiants.

Plusieurs questions demeurent encore ouvertes: que dire, par exemple, de l’importance de lire les sources primaires? Et quel est le rôle des enseignants? Les didacticiens des mathématiques ont-ils la responsabilité de former les enseignants qui devraient être sensibilisés à la question de ce parallélisme? Comment cela contribuerait-il à la formation des enseignants? Des recherches ultérieures pourront se pencher sur ces questions, de façon à déterminer clairement quelles sont les catégories de personnes (étudiants, enseignants, enseignants des mathématiques, chercheurs en didactique des mathématiques) qui devraient tenir compte de la question traitée plus haut dans leur pratique et de quelle façon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albree, J. (1994). An alternative to the conventional wisdom of a term paper in history of mathematics survey courses. MAA Notes, 24, 175–182.

    Google Scholar 

  • Anglin, W.S. (1992). Mathematics and history. Mathematical Intelligencer, 14(4), 6–12.

    Article  Google Scholar 

  • Anglin, W.S. (1994). Mathematics: A concise history and philosophy. Berlin: Springer.

    Book  Google Scholar 

  • Arrigo, G., & D’Amore, B. (1992). Infiniti. Milano: Angeli.

    Google Scholar 

  • Artigue, M. (1998). L’évolution des problématiques en didactique de l’analyse. Recherches en didactique des mathématiques, 18(2), 231–262.

    Google Scholar 

  • Artigue, M., Defouad, B., Dupérier, M., Juge, G., & Lagrange, J.B. (1997). L’intégration de calculatrices complexes dans l’enseignement des mathématiques au lycée (Rapport de recherche, Équipe DIDIREM). Paris: IREM Paris 7.

    Google Scholar 

  • Bagni, G.T. (1998). Dimostrare e convincere. Bollettino dei docenti di matematica del Canton Ticino, 36, 53–60.

    Google Scholar 

  • Bos, H.J.M. (1975). Differentials, high-order differentials and the derivative in the Leibnizian calculus. Archive for History of Exact Sciences, 14, 1–90.

    Article  Google Scholar 

  • Bos, H.J.M. (1976). History of mathematics in the mathematics curriculum at Utrecht University. Historia Math, 3, 473–476.

    Article  Google Scholar 

  • Bostock, D. (1972). Aristotle, Zeno and the potential infinite. Proceedings of the Aristotelian Society, 73, 37–51.

    Article  Google Scholar 

  • Bottazzini, U. (1990). Il flauto di Hilbert. Storia della matematica moderna e contemporanea. Torino, Italy: UTET.

    Google Scholar 

  • Bourbaki, N. (1963). Elementi di storia della matematica. Milano: Feltrinelli.

    Google Scholar 

  • Boyer, C.B. (1982). Storia della matematica (A. Carugo, Trans.). Milano: Mondadori. (Original work published in 1968).

    Google Scholar 

  • Carruccio, E. (1972). Matematiche elementari da un punto di vista superiore. Bologna, Italy: Pitagora.

    Google Scholar 

  • Castelnuovo, G. (1938). Le origini del calcolo infinitesimale. Bologna, Italy: Zanichelli.

    Google Scholar 

  • Cauchy, A.L. (1884–1897). Oeuvres complètes. Paris: Gauthier-Villars.

    Google Scholar 

  • Chevallard, Y. (1985). La transposition didactique, du savoir savant au savoir enseigné. Grenoble, France: La Penseé Sauvage.

    Google Scholar 

  • Confrey, J. (1992). Function probe. Santa Barbara, CA: Intellimation Library for Macintosh.

    Google Scholar 

  • Cornu, B. (1980). Interference des modèles spontanes dans l’apprentissage de la notion de limite. Cahier du seminaire de didactique des mathematiques et informatique, 8, 57–83.

    Google Scholar 

  • Cornu, B. (1981). Grandes lignes de l’evolution historique de la notion de limite. Cahier du seminaire de didactique des mathematiques et de l’informatique, 26, 305–326.

    Google Scholar 

  • Cornu, B. (1991). Limits. In D. Tall (Ed.), Advanced mathematical thinking (pp. 153-166). Dordrecht, The Netherlands: Kluwer Academic.

    Chapter  Google Scholar 

  • Davis, R., & Vinner, S. (1986). The notion of limit: Some seemingly unavoidable misconception stages. Journal of Mathematical Behavior, 5, 281–303.

    Google Scholar 

  • Dieudonné, J. (1989). L’arte dei numeri. Milano: Mondadori.

    Google Scholar 

  • Dimarakis, I., & Gagatsis, A. (1997). Alcune difficoltà nella comprensione del concetto di limite. La matematica e la sua didattica, 2, 132–149.

    Google Scholar 

  • Dittrich, A.B. (1973). An experiment in teaching the history of mathematics. Mathematics Teacher, 66, 35–38.

    Google Scholar 

  • Dubinsky, E. (1995). ISETL: A programming language for learning mathematics. Communications in Pure and Applied Mathematics, 48, 1–25.

    Article  Google Scholar 

  • Dunham, W. (1993). A mathematics seminar from the National Endowment for the Humanities. MAA Notes, 32, 177–182.

    Google Scholar 

  • Edwards, C.H., Jr. (1994). The historical development of the calculus. Berlin: Springer.

    Google Scholar 

  • Enriques, F. (1938). Le matematiche nella storia e nella cultura. Bologna, Italy: Zanichelli.

    Google Scholar 

  • Euclid. (1970). Elementi (A. Frajese & L. Maccioni, Eds.). Torino, Italy: UTET.

  • Euclid. (1952). The thirteen books of Euclid’s Elements (Sir T.L. Heath, Trans.). In R.M. Hutchins (Ed.), The Great hooks of the western world (pp. 1–402). Chicago: Encyclopaedia Britannica.

    Google Scholar 

  • Euler, L. (1755–1787). Institutiones calculi differentialis cum eius usu in analyst finitorum ac doctrina serierum (Vols. 1-2). Pavia, Italy: Galeati.

    Google Scholar 

  • Euler, L. (1796). Introduction a l’analyse infinitésimale (Vols. 1-2). Paris: Barrois.

    Google Scholar 

  • Fauvel, J., & van Maanen, J. (2000). History in the mathematics education: The ICMI study. Dordrecht, The Netherlands: Kluwer Academic.

    Google Scholar 

  • Furinghetti, F., & Radford, L. (2002). Historical conceptual developments and the teaching of mathematics: From philogenesis and ontogenesis theory to classroom practice. In L. English (Ed.), Handbook of international research in mathematics education (pp. 631–654). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Furinghetti, F., & Somaglia, A. (1997). Storia della matematica in classe. L’educazione matematica. Anno 18, Serie 5, 2, 1.

  • Geymonat, L. (1970). Storia del pensiero filosofico e seientifico. Milano: Garzanti.

    Google Scholar 

  • Giusti, E. (1983). Analisi matematica (Vol. 1). Torino, Italy: Boringhieri.

    Google Scholar 

  • Goldstine, H.H. (1995). A history of the calculus of variations from the 17th through the 19th century (Rev. ed.). Berlin: Springer.

    Google Scholar 

  • Gray, E.M., & Tall, D.O. (1994). Duality, ambiguity and flexibility: A proceptual view of simple arithmetic. Journal of Research in Mathematics Education, 25(2), 115–141.

    Google Scholar 

  • Grugnetti, L. (1992). L’histoire des mathématiques: une expérience interdisciplinaire fondée sur l’histoire des mathématiques. Plot, 60, 17–21.

    Google Scholar 

  • Grugnetti, L., & Rogers, L. (2000). Philosophical, multicultural and interdisciplinary issues. In J. Fauvel & J. van Maanen (Eds.), History in mathematics education: The ICMI study (pp. 39–62). Dordrecht, The Netherlands: Kluwer Academic.

    Google Scholar 

  • Jahnke, H.N. (1995). Historische Reflexion im Unterricht. Mathematica Didactica, 18(2), 30–58.

    Google Scholar 

  • Katz, V.J. (1986). Using history in teaching mathematics. For the Learning of Mathematics, 6, 13–19.

    Google Scholar 

  • Kleiner, I. (1986). Famous problems in mathematics: An outline of a course. For the Learning of Mathematics, 6(1), 31–38.

    Google Scholar 

  • Kline, M. (1972). Mathematical thought from ancient to modern times. New York: Oxford University Press.

    Google Scholar 

  • Lakoff, G., & Nunez, R. (2000). Where mathematics come from? How the embodied mind brings mathematics into being. New York: Basic.

    Google Scholar 

  • Laubenbacher, R.C., & Pengelley, D.J. (1992). Great problems of mathematics: A course based on original sources. American Mathematical Monthly, 99, 313–317.

    Article  Google Scholar 

  • Leibniz, G.W. (1849–1863). Mathematische Schriften (Vols. 1–7) (C.I. Gerhardt, Ed.). Berlin-Halle: Ascher-Schmidt.

  • Loria, G. (1982). Storia delie matematiche dall’alba delle civiltà al tramonto del secolo XIX. Milano: Cisalpino-Goliardica. (Original work published in 1929-1933)

    Google Scholar 

  • Mamona, J. (1987). Students interpretations of some concepts of mathematical analysis. Unpublished doctoral dissertation, University of Southampton.

    Google Scholar 

  • Mamona-Downs, J. (1990). Pupils’ interpretations of the limit concept: A comparison study between Greek and English. PME-14, 69–76.

    Google Scholar 

  • Marchisotto, E.A. (1993). Teaching mathematics humanistically: A new look at an old friend. MAA Notes, 32, 183–190.

    Google Scholar 

  • McKinzie, M., & Tuckey, C.D. (2001). High trigonometry, hyperreal numbers and Euler’s Analysis of infinities. Mathematics Magazine, 74(5), 339–368.

    Article  Google Scholar 

  • Menghini, M. (1982). Cavalieri e Leibniz: dagli indivisibili al differenziale. In O. Montaldo & L. Grugnetti (Eds.), La storia delle matematiche in Italia (pp. 385–394). Cagliari, Italy: Università Cagliari.

    Google Scholar 

  • Monaghan, J. (1991). Problems with the language of limits. For the Learning of Mathematics, 11(3), 20–24.

    Google Scholar 

  • Nemirovsky, R., & Noble, T. (1997). On mathematical visualization and the place where we live. Educational Studies in Mathematics, 33, 99–131.

    Article  Google Scholar 

  • Nobre, S. (Ed.). (1994). Meeting of the International Study Group on Relations between History and Pedagogy of Mathematics. Blumenau, Brasil: UNESP.

    Google Scholar 

  • Orton, A. (1983). Students’ understanding of differentiation. Educational Studies in Mathematics, 14, 235–250.

    Article  Google Scholar 

  • Piaget, J., & Garcia, R. (1983). Psychogenèse et histoire des sciences. Paris: Flammarion.

    Google Scholar 

  • Rabardel, P. (1995). Les hommes et les technologies: Approche cognitive des instruments contemporains. Paris: A. Colin.

    Google Scholar 

  • Radford, L. (1997). On psychology, historical epistemology and the teaching of mathematics: Towards a socio-cultural history of mathematics. For the Learning of Mathematics, 17(1), 26–33.

    Google Scholar 

  • Robinson, A. (1974). Non-standard analysis. London: North-Holland.

    Google Scholar 

  • Rufini, E. (1961 ). Il „Metodo” di Archimede e le origini del calcolo infinitesimale nell’antichità. Milano: Feltrinelli. (Original work published 1926)

    Google Scholar 

  • Saccheri, G. (1904). Euclides ab omni naevo vindicatus (G. Boccardini, Ed.). Milano: Hoepli.

  • Schwarzenberger, R. (1980). Why calculus cannot be made easy? Mathematical Gazette, 64, 158–166.

    Article  Google Scholar 

  • Scriba, C.J. (1993). Die Rolle der Geschichte der Mathematik in der Ausbildung von Schulern und Lehrern. Jahresberichte der Deutschen Mathematiker-Vereinigung, 85, 113–128.

    Google Scholar 

  • Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflection on processes and objects as different sides of the same coins. Educational Studies in Mathematics, 22, 1–36.

    Article  Google Scholar 

  • Shenitzer, A. (1995). A topics course in mathematics. In Swetz et al. (Eds.), Learn from the masters (pp. 283–295). Washington, DC: Mathematical Association of America.

    Google Scholar 

  • Sierpinska, A. (1985). Obstacle épistémologiques relatifs à la notion de limite. Recherches en didactique des mathématiques, 6(1), 5–68.

    Google Scholar 

  • Sierpinska, A. (1987). Humanities students and epistemological obstacles related to limits. Educational Studies in Mathematics, 18, 371–397.

    Article  Google Scholar 

  • Siu, M.K. (1995). Mathematical thinking and history of mathematics. In Swetz et al. (Eds.), Learn from the masters (pp. 279–282). Washington, DC: Mathematical Association of America.

    Google Scholar 

  • Smith, D.E. (1959). A source book in mathematics. New York: Dover. (Original work published in 1929)

    Google Scholar 

  • Stillwell, J. (1997). Mathematics and its history. Berlin: Springer.

    Google Scholar 

  • Swetz, F.J. (1982). The use of projects in teaching the history of mathematics. Historia Mathematica, 9, 201–205.

    Article  Google Scholar 

  • Swetz, F.J. (1989). Using problems from the history of mathematics in classroom instruction. Mathematics Teacher, 82, 370–377.

    Google Scholar 

  • Swetz, F.J. (1992). Some not so random thoughts about the history of mathematics, its teaching, learning and textbooks. Primus, 5(2), 97–107.

    Article  Google Scholar 

  • Swetz, F.J. (1995). To know and to teach: Mathematical pedagogy from a historical context. Educational Studies in Mathematics, 29, 73–88.

    Article  Google Scholar 

  • Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12, 151–169.

    Article  Google Scholar 

  • Tall, D. (1982). Elementary axioms and pictures for infinitesimal calculus. Bulletin of the IMA, 14, 43–48.

    Google Scholar 

  • Tall, D. (1985). Understanding the calculus. Mathematical Teaching, 110, 49–53.

    Google Scholar 

  • Tall, D. (1986). Graphic Calculus (Versions 1, 2, & 3). [BBC compatible software]. London: Glentop Press.

    Google Scholar 

  • Tall, D. (1990a). A versatile approach to calculus and numerical methods. Teaching Mathematics and Its Applications, 9(3), 124–130.

    Article  Google Scholar 

  • Tall, D. (1990b). Inconsistencies in the learning of calculus and analysis. Focus on Learning Problems in Mathematics, 12, 49–64.

    Google Scholar 

  • Tall, D. (1994, July). A versatile theory of visualization and symbolisation in mathematics. Paper presented at the 46th Conference of CIEAEM, Toulouse, France.

    Google Scholar 

  • Tall, D. (1996). Function and calculus. In A.J. Bishop et al. (Eds.), International Handbook of Mathematics Education (pp. 289–325). Dordrecht, The Netherlands: Kluwer Academic.

    Google Scholar 

  • Tall, D., McGowen, M., & DeMarois, P. (2000). The function machine as a cognitive root for building a rich concept image of the function concept. In N. Fernandez (Ed.), Proceedings of the twenty-second annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 247–254). Columbus, OH: ERIC Clearinghouse for Science, Mathematics and Environmental Education.

    Google Scholar 

  • Tall, D. (2001). Natural and formal infinities. Educational Studies in Mathematics, 48(2/3), 199–238.

    Article  Google Scholar 

  • Tall, D., Gray, E., Bin Ali, M., Crowley, L., DeMarois, P., McGowen, M., et al. (2001). Symbols and the bifurcation between procedural and conceptual thinking. Canadian Journal of Science, Mathematics and Technology Education, 1, 81–104.

    Article  Google Scholar 

  • Todorov, T.D. (2001). Back to classics: Teaching limits through infinitesimals. International Journal of Mathematical Education in Science and Technology, 32(1), 1–20.

    Article  Google Scholar 

  • Trouche, L. (1996). Etude des rapports entre processus de conceptualisation et processus d’instrumentation. Thèse de doctorat, Université de Montpellier 2.

    Google Scholar 

  • Tsamir, P., & Tirosh, D. (1992). Students’ awareness of inconsistent ideas about actual infinity. PME-16, 90–97.

    Google Scholar 

  • Vitali, G. (1979). Limiti, serie, frazioni continue, prodotti infiniti. In L. Berzolari, G. Vivanti, & D. Gigli (Eds.), Enciclopedia delle matematiche elementari (Vol. 1, p. 2). Milano: Hoepli.

    Google Scholar 

  • Williamson, B. (1979). History of mathematics: A course outline, Historia Mathematica, 6, 318–320.

    Article  Google Scholar 

  • Yerushalmy, M. (1997). Reaching the unreachable: technology and semantics of asymptotes. International Journal of Computers for Mathematical Learning, 2, 1–25.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagni, G.T. The Historical Roots of the Limit Notion: Cognitive Development and the Development of Representation Registers. Can J Sci Math Techn 5, 453–468 (2005). https://doi.org/10.1080/14926150509556675

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14926150509556675

Navigation