Skip to main content

Advertisement

Log in

Knowledge Is Knowledge Is Knowledge? The Relationship between Personal and Scientific Epistemologies

  • Published:
Canadian Journal of Science, Mathematics and Technology Education Aims and scope Submit manuscript

Abstract

In this paper, we explore cross-domain versus domain-specific scientific epistemological understanding. Research about relationships between such understandings shows mixed results. The ambiguities may result from the instruments used. Unlike most studies, we combined instruments from the personal- and science-epistemology research traditions. Students in Grades 6 to 9 in a science-centred school completed adaptations of the Epistemological Thinking Assessment (ETA) (Kuhn, Cheney, & Weinstock, 2000) and the Views of Science-Technology-Society (VOSTS) (Aikenhead & Ryan, 1992) instruments. Regular-school students in Grades 7 and 9 also completed the ETA. Developmental patterns on the ETA emerged as expected in both schools. However, the science-centred students’ views of knowledge in the social and physical domains seem more differentiated and sophisticated. Their performance on the VOSTS tended toward higher scores, although lower than expected. There was no significant relationship between performance on the ETA and on the VOSTS. The findings propose domain-specific aspects of epistemological understanding and development.

Sommaire exécutif

La recherche sur l’epistemologie des sciences et sur l’epistemologie personnelle fait ressortir des similarités entre la représentation générale de certaines opinions, complexes ou naïves, et les opinions que maintiennent les étudiants. Pourtant, la recherche sur l’epistemologie personnelle reflète une position généralisée dans le domaine qu’on ne retrouve pas normalement dans la recherche en enseignement des sciences. Peu d’études ont en effet analysé le lien entre les concepts épistémologiques généraux et les concepts épistémologiques spécifiques à un domaine, et en particulier ceux qui sont spécifiques au domaine des sciences. Une meilleure compréhension de la nature des connaissances épistémologiques générales ou spécifiques à certains domaines pourrait avoir des implications pour les curriculums scientifiques, surtout dans le cas des programmes qui proposent une approche interdisciplinaire ou STS.

Dans cette étude, nous avons fait un premier pas dans l’analyse de ces liens. Nous avons associé deux instruments qui se distinguent par leur niveau de spécificité au regard de chaque domaine: les questionnaires VOSTS (Views on Science-Tedmology-Society) (Aikenhead et Ryan, 1992) et ETA Epistmological Thinking Assessment) (Kuhn, Cheney, et Weinstock, 2000). Nous avons examiné deux questions: (1) y a-t-il un lien entre la compréhension des concepts épistémologiques généraux et scientifiques? (2) y a-t-il un lien entre l’apprentissage spécifique des sciences et la compréhension des concepts épistémologiques généraux ?

Des étudiants de sixième (N=75), septième (N=68), huitième (JV=66) et neuvième année scolaire (N= 34), dans une école à orientation scientifique en Israël (école publique qui fait passer des tests d’admission) ont répondu à des variantes des questionnaires ETA et VOSTS. Le curriculum est le même que le curriculum standard national, sauf qu’il comprend des heures supplémentaires en sciences, sans mettre explicitement l’accent sur l’epistemologie. Les résultats provenant de cette école ont été comparés aux résultats d’une autre étude, menée dans une école plus standard où 63 élèves de septième et 70 élèves de neuvième année avaient répondu au questionnaire ETA.

La variante du questionnaire VOSTS comprenait cinq questions à choix obligé, évaluées selon une échelle à trois niveaux classant les opinions de très nuancées à purement objectivistes. Les questions individuelles n’étaient pas liées de façon significatives. La distribution des évaluations était normale, même si la courbe était légèrement faussée en faveur des notes plus élevées. Il n’y avait aucune différence significative d’une année scolaire à l’autre. La performance au test VOSTS n’était pas liée de façon significative à la performance au test ETA. Les résultats de type évaluativistes et multiplistes (les deux niveaux les plus élevés de l’ETA) étaient distribués de façon à peu près égale dans les scores VOSTS élevés et moyens.

Dans le cas des deux écoles, l’évolution de l’absolutisme â l’évaluativisme dans tous les domaines est semblable aux résultats de Kuhn et al. (2000), mais cette ressemblance est encore plus marquée dans l’école standard. Dans l’école plus centrée sur les sciences, les étudiants avaient tendance â être ou bien absolutistes ou bien évaluativistes, tandis que dans les autres groupes la plupart étaient multiplistes. Il est surprenant de constater que la proportion plus élevées d’absolutistes à l’école orientée sur les sciences se manifestait aussi dans le domaine physique.

De façon générale, les résultats de cette étude suggèrent que les connaissances épistémolo-giques sont spécifiques aux disciplines, et que l’immersion dans un champ d’études en particulier contribue au développement de la compréhension des concepts épistémologiques. Ce qui semble être des opinions de type général pourraient simplement refléter une compréhension superficielle et donc indifférenciée des concepts épistémologiques. l’immersion peut permettre d’élaborer certaines opinions sur la connaissance dans une discipline donnée et ainsi permettre de la distinguer d’autres champs de la connaissance. Le fait que les résultats recueillis à l’école standard étaient hautement compatibles avec les résultats de Kuhn et al. (2000), alors que ceux de l’école centrée sur les sciences ne l’étaient pas, indique que l’immersion joue un rôle dans une discipline donnée pour ce qui est du processus de differentiation. l’hypothèse de l’efiicacité potentielle de l’immersion est soutenue par la plus haute proportion d’évaluativistes à l’école orientée sur les sciences. Cependant, le nombre élevé d’absolutistes suggère qu’il se crée une vision des sciences comme domaine privilégié. Une implication pour l’éducation pourrait donc être l’idée de contrebalancer l’immersion en sciences par des approches susceptibles d’atténuer cet aspect privilégiant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Association for the Advancement of Science. (1993). Benchmarks for science literacy. New York: Oxford University Press.

    Google Scholar 

  • Aikenhead, G.S., & Ryan, A.G. (1992). The development of a new instrument: Views on Science-Technology-Society (VOSTS). Science Education, 76(5), 477–491.

    Article  Google Scholar 

  • Aikenhead, G.S., Ryan, A.G., & Fleming, R.W. (1989). Views on Science-Technology-Society, Form CDN.mc.5. Saskatoon, SK: University of Saskatchewan.

    Google Scholar 

  • Becker, S. (1997). Individual differences in juror reasoning: General intelligence, social intelligence and the story model. Unpublished doctoral dissertation, Fairleigh Dickinson University, NJ.

    Google Scholar 

  • Belenky, M.F., Clinchy, B.M., Goldbert, N.R., & Tarule, J.M. (1986). Women’s ways of knowing: The development of self, voice and mind. New York, NY: Basic.

    Google Scholar 

  • Bell, P., & Linn, M.C. (2002). Beliefs about science: How does science instruction contribute. In B.K. Hofer & P.R. Pintrich (Eds.), Personal epistemology: The psychology of beliefs about knowledge and knowing (pp. 321–346). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Brickhouse, N.W., Dagher, Z.R., Letts, W.J.L.I., & Shipman. H.L. (2000). Diversity of students’ views about evidence, theory, and the interface between science and religion in an astronomy course. Journal of Research in Science Teaching, 57(4), 340–362.

    Article  Google Scholar 

  • Buehl, M.M., Alexander, P.A., & Murphy, P.K. (2002). Beliefs about schooled knowledge: Domain specific or domain general? Contemporary Educational Psychology, 27(3), 415–49.

    Article  Google Scholar 

  • Cain, W.E., & Graff, G. (1994). Teaching the conflicts: Gerald Graff, curricular reform, and the culture wars. New York: Garland.

    Google Scholar 

  • Carey, S., Evans, R., Honda, M., Jay, E., & Unger, C. (1989). ’An experiment is when you try it and see if it works’: A study of Grade 7 students’ understanding of scientific knowledge. International Journal of Science Education, II, 514–529.

    Google Scholar 

  • Carey, S., & Smith, C. (1993). On Understanding the Nature of Scientific Knowledge. Educational Psychologist, 25(3), 235–251.

    Article  Google Scholar 

  • Cobern, W.W. (1996). Worldview theory and conceptual change in science education. Science Education, 80(5), 579–610.

    Article  Google Scholar 

  • Cobern, W.W. (1997). Distinguishing science-related variation in the causal universal of college students’ worldviews. Electronic Journal of Science Education, 1(3). Available: http://unr.edu/homepage/jcannon/ejse/cobern.htmlJuly 2004).

    Google Scholar 

  • Cobern, W.W., Ellington, J.E., & Schores, D.M. (1990, April). A logico-structural worldview analysis of the interrelationship between science interest, gender, and concept of nature. Paper presented at the Annual Meeting of the National Association for Research in Science Teaching, Atlanta, GA.

    Google Scholar 

  • Davis, E.A. (2003). Untangling dimensions of middle school students’ beliefs about scientific knowledge and science learning. International Journal of Science Education, 25(4), 439–468.

    Article  Google Scholar 

  • Demastes, S.S., Good, R.G., & Peebles, P. (1995). Students’ conceptual ecologies and the process of conceptual change in evolution. Science Education, 79(6), 637–666.

    Article  Google Scholar 

  • diSessa, A. (1988). Knowledge in pieces. In G. Forman & P.B. Pufall (Eds.), Constructivis in the computer age (pp. 49–70). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Driver, R., Leach, J., Millar, R., & Scott, P. (1996). Young people’s images of science. Buckingham, UK: Open University Press.

    Google Scholar 

  • Hammer, D., & Elby, A. (2002). On the form of a personal epistemology. In B.K. Hofer & P.R. Pintrich (Eds.), Personal epistemology: The psychology of beliefs about knowledge and knowing (pp. 169–190). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Harrari, H. (1992). Tomorrow 98: Report of the High Commission for Science and Technology Education. Jerusalem: Ministry of Culture and Education (in Hebrew).

    Google Scholar 

  • Hofer, B.K. (2000). Dimensionality and disciplinary differences in personal epistemology. Contemporary Educational Psychology, 25, 378–405.

    Article  Google Scholar 

  • Hofer, B.K. (2001). Personal epistemology research: Implications for learning and teaching. Journal of Educational Psychology Review, 13(4), 353–383.

    Article  Google Scholar 

  • Hofer, B.K., & Pintrich, P.R. (1997). The development of epistemological theories: Beliefs about knowledge and knowing and their relation to learning. Review of Educational Research, 67(1), 88–140.

    Article  Google Scholar 

  • Johnston, A.T., & Southerland, S.A. (2002, April). Conceptual ecologies and their influence on nature of science conceptions: More dazed and confused than ever. Paper presented at the Annual Meeting of the National Association for Research in Science Teaching, New Orleans, LA.

    Google Scholar 

  • Kearney, M. (1975). World view theory and study. Annual Review of Anthropology, 4, 247–270.

    Article  Google Scholar 

  • Khishfe, R., & Abd-El-Khalick, F. (2002). Influence of explicit and reflective versus implicit inquiry-oriented instruction in sixth graders’ views of nature of science. Journal of Research in Science Teaching, 39(7), 551–578.

    Article  Google Scholar 

  • King, P.M., & Kitchener, K.S. (1994). Developing reflective judgment: Understanding and promoting intellectual growth and critical thinking in adolescents and adults. San Francisco, CA: Jossey-Bass.

    Google Scholar 

  • King, P.M., & Kitchener, K.S. (2002). The reflective judgment model: Twenty years of research on epistemic cognition. In B.K. Hofer & P.R. Pintrich (Eds.), Personal epistemology: The psychology of beliefs about knowledge and knowing (pp. 37–61). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • King, P.M., Kitchener, K.S., Davison, M.L., Parker, C., & Wood, P.K. (1983). The justification of beliefs in young adults: A longitudinal study. Human Development, 26, 106–116.

    Article  Google Scholar 

  • Kuhn, D. (1991). The skills of argument. New York: Cambridge University Press.

    Book  Google Scholar 

  • Kuhn, D., Cheney, R., & Weinstock, M. (2000). The development of epistemological understanding. Cognitive Development, 15, 309–328.

    Article  Google Scholar 

  • Kuhn, D., Garcia-Mila, M., Zohar, A., & Andersen, C. (1995). Strategies of knowledge acquisition. Monographs of the Society for Research in Child Development, 60(4) Serial no. 245.

    Google Scholar 

  • Kuhn, D., Pennington, N., & Leadbeater, B. (1983). Adult thinking in developmental perspective. In P. Baltes & O. Brim (Eds.), Lifespan development and behavior (pp. 157–195). New York: Academic Press.

    Google Scholar 

  • Leach, J., Millar, R., Ryder, J., & Sere, M.-G. (2000). Epistemological understanding in science learning: The consistency of representations across contexts. Learning and Instruction, 10, 497–527.

    Article  Google Scholar 

  • Leadbeater, B., & Kuhn, D. (1989). Interpreting discrepant narratives: Hermeneutics and adult cognition. In J. Sinnott (Ed.), Everyday problem solving (pp. 175–190). New York: Praeger.

    Google Scholar 

  • Lederman, N.G. (1992). Students’ and teachers’ conceptions of the nature of science: A review of the research. Journal of Research in Science Teaching, 29, 331–359.

    Article  Google Scholar 

  • Lederman, N.G., Abd-El-Khalick, F., Bell, R.L., & Schwartz, R.S. (2002). Views of Nature of Science Questionnaire: Toward valid and meaningful assessment of learners’ conceptions of nature of science. Journal of Research in Science Teaching, 39(6), 497–521.

    Article  Google Scholar 

  • Lederman, N.G., Wade, P.D., & Bell, R.L. (1998). Assessing the nature of science: What is the nature of our assessments? Science & Education, 7(6), 585–615.

    Google Scholar 

  • Linn, M.C. (1992). Encouraging knowledge construction. In E.D. Corte, M.C. Linn, H. Mand., & L. Verschaffel (Eds.), Computer-based learning environments and problem solving. Berlin: Springer-Verlag.

    Google Scholar 

  • Linn, M.C., diSessa, A., Pea, R.D., & Songer, N.B. (1994). Can research on science learning and instruction inform standards for science education? Journal of Science Education and Technology, 3, 7–15.

    Article  Google Scholar 

  • Linn, M.., & Hsi, S. (2000). Computers, teachers, peers: Science learning partners. Mahwah, NJ: Lawrence Erlbaum Associates.

    Book  Google Scholar 

  • Martin, J.E., Silva, D.G., Newman, J.H., & Thayer, J.T. (1994). An investigation into the structure of epistemological style. Personality and Individual Differences, 16, 617–629.

    Article  Google Scholar 

  • Mintzes, J.J., Trowbridge, J.E., & Arnaudin, M.W. (1991). Children’s biology: Studies on conceptual development in the life sciences. In S.M. Glynn, R.H. Yean, & B.K. Britton (Eds.), The psychology of learning science (pp. 179–202). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Moss, D.M., Abrams, E.D., & Robb, J. (2001). Examining student conceptions of the nature of science. International Journal of Science Education, 23(8), 771–790.

    Article  Google Scholar 

  • National Research Council. (1996). National science education standards. Washington, DC: National Research Council.

    Google Scholar 

  • National Research Council. (2000). Inquiry and the National Science Education Standards: A guide for teaching and learning. Washington, DC: National Academy Press.

    Google Scholar 

  • Paulsen, M.B., & Wells, C.T. (1998). Domain differences in the epistemological beliefs of college students. Research in Higher Education, 39(4), 365–384.

    Article  Google Scholar 

  • Perry, W. (1970). Forms of intellectual and ethical development in the college years. New York: Holt.

    Google Scholar 

  • Roth, W.M., & Roychoudhury, A. (1994). Physics students’ epistemologies and views about knowing and learning. Journal of Research in Science Teaching, 31(1), 5–30.

    Article  Google Scholar 

  • Rubba, P.A., & Anderson, H.O. (1978). Development of an instrument to assess secondary school students’ understanding of the nature of scientific knowledge. Science Education, 62, 449–458.

    Article  Google Scholar 

  • Ryan, A.G., & Aikenhead, G.S. (1992). Students’ preconceptions about the epistemology of science. Science Education, 76(6), 559–580.

    Article  Google Scholar 

  • Ryder, J., Leach, J., & Driver, R. (1999). Undergraduate science students’ images of science. Journal of Research in Science Teaching, 36(2), 201–219.

    Article  Google Scholar 

  • Sandoval, W.A., & Morrison, K. (2003). High school students’ ideas about theories and theory change after a biological inquiry unit. Journal of Research in Science Teaching, 40(4), 369–392.

    Article  Google Scholar 

  • Schommer, M., & Walker, K. (1995). Are epistemological beliefs similar across domains? Journal of Educational Psychology, 87(3), 424–432.

    Article  Google Scholar 

  • Sinatra, G.M., Southerland, S.A., McConaughy, F., & Demastes, J.W. (2003). Intentions and belief in students’ understanding and acceptance of biological evolution. Journal of Research in Science Teaching, 40(5), 510–528.

    Article  Google Scholar 

  • Smith, C., Maclin, D., Houghton, C., & Hennessey, M.G. (2000). Sixth-grade students’ epistemologies of science: The impact of school science experiences on epistemological development. Cognition & Instruction, 18(2), 349–422.

    Article  Google Scholar 

  • Solomon, J., Scott, L., & Duveen, J. (1996). Large-scale exploration of pupils’ understanding of the nature of science. Science Education, 80(5), 493–508.

    Article  Google Scholar 

  • Songer, N.B., & Linn, M.C. (1991). How do students’ views of science influence knowledge integration? Journal of Research in Science Teaching, 28, 761–784.

    Article  Google Scholar 

  • Stanovich, K.E., & West, R.F. (1997). Reasoning independently of prior belief and individual differences in actively open-minded thinking. Journal of Educational Psychology, 89, 342–357.

    Article  Google Scholar 

  • Stanovich, K.E., & West, R.F. (1998). Individual differences in rational thought. Journal of Experimental Psychology: General, 127, 161–188.

    Article  Google Scholar 

  • Stodolsky, S.S. (1988). The subject matters: Classroom activity in math and social studies. Chicago: University of Chicago Press.

    Google Scholar 

  • Stodolsky, S.S., & Grossman, P.L. (1995). The impact of subject matter on curricular activity: An analysis of five academic subjects. American Educational Research Journal, 32, 227–249.

    Article  Google Scholar 

  • Strike, K.A., & Posner, G.J. (1992). A revisionist theory of conceptual change. In R.A. Duschl & R.J. Hamilton (Eds.), Philosophy of science, cognitive psychology, and educational theory and practice (pp. 147–176). Albany, NY: State University of New York Press.

    Google Scholar 

  • Tamir, P. (1994). Israeli students’ conceptions of science and views about the scientific enterprise. Research in Science & Technological Education, 12(2), 99–116.

    Article  Google Scholar 

  • Thoermer, C., & Sodian, B. (2002). Science undergraduates’ and graduates’ epistemologies of science: The notion of interpretive frameworks. New Ideas in Psychology, 20, 263–283.

    Article  Google Scholar 

  • Vosniadou, S., & Brewer, W.F. (1992). Mental models of the Earth: A study of conceptual change in childhood. Cognitive Psychology. 24, 535–585.

    Article  Google Scholar 

  • Weinstock, M. (1999). Epistemological understanding and argumentative competence as foundations of juror reasoning skill. Unpublished doctoral dissertation, Columbia University, New York.

    Google Scholar 

  • Weinstock, M., & Cronin, M.A. (2003). The everyday production of knowledge: Individual differences in epistemological understanding and juror-reasoning skill. Applied Cognitive Psychology, 17, 161–181.

    Article  Google Scholar 

  • Weinstock, M., Neuman, Y., & Glassner, A. (2004). Developmental factors in the ability to identify informal reasoning fallacies. Manuscript submitted for publication.

    Google Scholar 

  • Wineburg, S.S. (1991). Historical problem solving: A study of the cognitive processes uses in the evaluation of documentary and pictorial evidence. Journal of Educational Psychology, 83, 73–87.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tabak, I., Weinstock, M.P. Knowledge Is Knowledge Is Knowledge? The Relationship between Personal and Scientific Epistemologies. Can J Sci Math Techn 5, 307–328 (2005). https://doi.org/10.1080/14926150509556664

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14926150509556664

Navigation