Skip to main content
Log in

The Anatomy of Junior High School Science Textbooks: An Analysis of Textual Characteristics and a Comparison to Media Reports of Science

  • Article
  • Published:
Canadian Journal of Science, Mathematics and Technology Education Aims and scope Submit manuscript

Abstract

This study compared junior high school science textbooks to media reports of science, on the basis of four textual characteristics: text type, truth status of statements, metalanguage use, and scientific status of statements and their role in scientific reasoning. The text type of both junior high science textbooks and media reports of science was found to be overwhelmingly expository. There was no argumentation in junior high science textbooks, a finding similar for some of the media reports of science, but vastly different for others, which had considerable argumentation. Almost all statements in the junior high science textbooks were presented as being true. In media reports of science, by contrast, only two thirds of the statements were presented as true. The junior high science textbooks reflected a range of metalanguage use largely limited to observational words, words that describe the process of doing research, and relational words, such as ’cause.’ The frequency of metalanguage use was only one third that found in media reports of science. The majority of both junior high texts and media reports of science was written as statements of fact or conclusion. Implications of these comparisons for the goal of life-long science learning and scientific literacy are examined.

Résumé

Cette étude compare certains manuels scientifiques scolaires du premier cycle du secondaire aux reportages scientifiques présentés dans les médias. L’analyse se fonde sur quatre critères textuels: (a) le type de texte, (b) la vérité des énoncés, (c) l’utilisation du métalangage et (d) le caractère scientifique des énoncés et le rôle qu’ils jouent dans le raisonnement scientifique. Les deux programmes retenus sont ceux de Science Directions (Roberts et al., 1989; Roberts, Winter, Gore et al., 1991; Roberts, Winter, Bullard et al., 1991) et de SciencePlus Technology and Society (McFadden, Morrison, Armour, Hammond et al., 1989; McFadden, Morrison, Armour, Moore et al., 1989; McFadden, Morrison, Armour, Churcher et al., 1989). Il s’agit là de manuels scientifiques généraux utilisés ou approuvés dans plusieurs provinces canadiennes. Ces manuels sont comparables entre eux et présentent des contenus et des structures semblables à ceux qu’on trouve dans les manuels de même niveau utilisés dans d’autres pays industrialisés. II est donc possible de généraliser les résultats de cette étude à d’autres contextes. Quand aux reportages médiatiques analysés ici, nous avons choisi ceux de Norris et Phillips (1994). Ces reportages sont courts, couvrent différents secteurs de la science, présentent des problèmes scientifiques fondamentaux et appliqués et représentent une vaste gamme d’aspects techniques.

Dans tous les cas les textes sont surtout des exposés. Aucun élément d’argumentation n’est présent dans les manuels scolaires, ce qui est également le cas d’une bonne partie des reportages scientifiques présentés dans les médias, alors que les autres types de reportages se caractérisent au contraire par une argumentation étoffée. Presque tous les énoncés contenus dans les manuels du premier cycle du secondaire sont présentés comme vrais, alors que dans les reportages scientifiques, seuls les deux tiers des énoncés le sont. Dans les manuels scolaires, le métalangage se limite surtout aux mots liés à l’observation, ceux qui décrivent des processus de recherche et ceux qui renvoient aux liens relationnels, par exemple les rapports de « cause ». La fréquence du métalangage était environ le tiers comparativement à ce qu’on trouve dans les reportages scientifiques. La plupart des textes contenus dans les manuels et les reportages sont présentés comme des faits ou des conclusions.

La façon dont les manuels sont écrits a des conséquences sur les possibilités pour le système d’éducation d’atteindre son objectif, soit celui de former des citoyens avertis sur le plan scientifique. Une fois la formation scolaire terminée, les reportages scientifiques dans les médias constituent une source importante d’informations scientifiques. Par conséquent, on peut considérer la capacité d’interpréter les reportages médiatiques comme partie intégrante des habiletés qu’il est nécessaire d’acquérir pour devenir un citoyen averti sur le plan scientifique. Les tendances que met en évidence cette étude indiquent que les manuels scolaires privilégient certains aspects des sciences au détriment d’autres. Ils présentent en effets les faits scientifiques et aident les étudiants à reconnaître certains types d’énoncés tels que les rapports de cause à effet. Us présentent également de longs exposés, et fournissent aux étudiants l’occasion de perfectionner leurs capacités de lecture de ce type de texte. Cependant, les manuels scolaires négligent de représenter le caractère argumentatif de la science et la nature même du raisonnement scientifique. Ils ont aussi le défaut de représenter moins bien l’aspect social de la recherche scientifique que ne le font les reportages médiatiques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, P.A., & Kulikowich, J.M. (1994). Learning from physics text: A synthesis of recent research. Journal of Research in Science Teaching, 31, 895–911.

    Google Scholar 

  • Alvermann, D.E., & Guthrie, J.T. (1993). Themes and directions of the National Reading Research Center. In Perspectives in reading research (Vol. 1, pp. 1–17). Atlanta, GA: National Reading Research Center.

    Google Scholar 

  • Alvermann, D.E., Hynd, C.E., & Qian, G. (1995). Effects of interactive discussion and text type on learning counterintuitive science concepts. The Journal of Educational Research, §6(3), 146–154.

    Google Scholar 

  • Armbruster, B.B.’ (1991). Framing: A technique for improving learning from science texts. In C.M. Santa & D.E. Alvermann (Eds.), Science learning: Processes and applications (pp. 104–113). Newark, DE: International Reading Association.

    Google Scholar 

  • Austin, J.L. (1975). How to do things with words. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Baker, L. (1991). Metacognition, reading and science education. In C.M. Santa & D.E. Alvermann (Eds.), Science learning: Processes and applications (pp. 2–13); Newark, DE: International Reading Association.

    Google Scholar 

  • Baker, L., Dreher, M.J., & Guthrie, J.T. (Eds.). (2000). Engaging young readers. New York: Guilford.

    Google Scholar 

  • Barba, R.H., Pang, V.O., & Santa Cruz, R. (1993). User-friendly text. Science Teacher, 60(5), 15–17.

    Google Scholar 

  • Bazerman, C. (1988). Shaping written knowledge. Madison: University of Wisconsin Press.

    Google Scholar 

  • Bordt, M., de Broucker, P., Read, C., Harris, S., & Zhang, Y. (2001). Science and technology skills: Participation and performance in elementary and secondary school. Education Quarterly Review, 8, 12–21.

    Google Scholar 

  • Carroll, N. (2001). On the narrative connection. In W. van Peer & S. Chatman (Eds.), New perspectives on narrative perspective (pp. 21–41). Albany, NY: State University of New York Press.

    Google Scholar 

  • Carter, G.S., & Simpson, R.D. (1978). Science and reading: A basic duo. The Science Teacher, 45, 18–21.

    Google Scholar 

  • Chavkin, L. (1997). Readability and reading ease revisited: State-adopted science textbooks. The Clearing House, 70(3), 151–154.

    Google Scholar 

  • Chiappetta, E.L., Sethna, G.H., & Fillman, D.A. (1991). A method to quantify major themes of scientific literacy in science textbooks. Journal of Research in Science Teaching, 28, 713–725.

    Google Scholar 

  • Chiappetta, E.L., Sethna, G.H., & Fillman, D.A. (1993). Do middle school life science textbooks provide a balance of scientific literacy themes? Journal of Research in ScienceTeaching, 30, 787–797.

    Google Scholar 

  • Cook, L.K., & Mayer, R.E. (1988). Teaching readers about the structure of science text. Journal of Educational Psychology, 80, 448–456.

    Google Scholar 

  • Craig, M.T., & Yore, L.D. (1995). Middle school students’ metacognitive knowledge about science reading and science text: An interview study. Reading Psychology, 16, 169–213.

    Google Scholar 

  • Craig, M.T., & Yore, L.D. (1996). Middle school students’ awareness of strategies for resolving comprehension difficulties in science reading. Journal of Research and Development in Education, 29, 226–238.

    Google Scholar 

  • Daniels, D. (1996). A study of science textbook readability. Australian Science Teachers Journal, 42(3), 61–64.

    Google Scholar 

  • DiGisi, L.L., & Willett, J.B. (1995). What high school biology teachers say about their textbook use: A descriptive study. Journal of Research in ScienceTeaching, 32(2), 123–142.

    Google Scholar 

  • Dole, J.A., Duffy, G.G., Roehler, L.R., & Pearson, P.D. (1991). Moving from the old to the new: Research on reading comprehension instruction. Review of Educational Research, 61, 239–264.

    Google Scholar 

  • Dukes, R.J., & Kelly, S.A. (1979). The readability of college astronomy and physics texts. The Physics Teacher, 17(1), 168–173.

    Google Scholar 

  • Eltinge, E.M., & Roberts, C.W. (1993). Linguistic content analysis: A method to measure science as inquiry in textbooks. Journal of Research in Science Teaching, 30(1), 65–83.

    Google Scholar 

  • Ennis, R.H. (1996). Critical thinking. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Farragher, P., & Yore, L.D. (1997). The effects of embedded monitoring and regulating devices on the achievement of high school students learning science from text. School Science and Mathematics, 97(2), 87–95.

    Google Scholar 

  • Fisher, A. (1988). The logic of real arguments. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Fisher, A., & Scriven, M. (1997). Critical thinking: Its definition and assessment. Point Reyes, CA: Edgepress.

    Google Scholar 

  • Fraenkel, J.R., & Wallen, N.E. (1996). How to design and evaluate research in education. New York: McGraw-Hill.

    Google Scholar 

  • Gaskins, I.W., Guthrie, J.T., Satlow, E., Ostertag, J., Six, L., Byrne, J., et al. (1994). Integrating instruction of science, reading, and writing: Goals, teacher development, and assessment. Journal of Research in ScienceTeaching, 31, 1039–1056.

    Google Scholar 

  • Gibbs, A., & Lawson, A.E. (1992). The nature of scientific thinking as reflected by the work of biologists and by science textbooks. The American Biology Teacher, 54(3), 137–152.

    Google Scholar 

  • Glynn, S.M., & Muth, D. (1994). Reading and writing to learn science: Achieving scientific literacy. Journal of Research in ScienceTeaching, 31, 1057–1073.

    Google Scholar 

  • Glynn, S.M. & Takahashi, T. (1998). Learning from analogy-enhanced science text. Journal of Research in Science Teaching, 35, 1129–1149.

    Google Scholar 

  • Govier, T. (1985). A practical study of argument. Belmont, CA: Wadsworth.

    Google Scholar 

  • Graesser, A., Golding, J.M., & Long, D.L. (1991). Narrative representation and comprehension. In R. Barr, M.L. Kamil, P. Mosenthal, & P.D. Pearson (Eds.), Handbook of reading research (Vol. 2, pp. 171–205). New York: Longman.

    Google Scholar 

  • Guthrie, J.T., & Wigfield, A. (2000). Engagement and motivation in reading. In M.L. Kamil, P.B. Mosenthal, P.D. Pearson, & R. Barr (Eds.), Handbook of reading research (Vol. 3, pp. 403–422). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Hamm, M., & Adams, D. (1988). How science, technology and society issues are presented in science textbooks. Educational Research Quarterly, 12(2), 30–35.

    Google Scholar 

  • Holliday, W.G., & Braun, C. (1979). Readability of science materials. Viewpoints in Teaching and Learning, 55(1), 55–66.

    Google Scholar 

  • Holliday, W.G., Yore, L.D., & Alvermann, D.E. (1994). The reading-science learning-writing connection: Breakthroughs, barriers, and promises. Journal of Research in Science Teaching, 31, 877–893.

    Google Scholar 

  • Iding, M.K. (1997). How analogies foster learning from science texts. Instructional Science, 25, 233–253.

    Google Scholar 

  • Inner glow. (1992, July). Discover, 13(7), 17.

    Google Scholar 

  • Jabion, P.C. (1992). A generic biology textbook review: It is time to stop placing Band-Aids on our biology curricula. The American Biology Teacher, 54(2), 72–74.

    Google Scholar 

  • Jeffrey, K.R., & Roach, L.E. (1994). A study of the presence of evolutionary protoconcepts in prehigh school textbooks. Journal of Research in Science Teaching, 31, 507–518.

    Google Scholar 

  • Johnson, L.L., & Otto, W. (1982). Effect of alterations in prose style on the readability of college texts. Journal of Educational Research, 75, 222–229.

    Google Scholar 

  • Just, M.A., & Carpenter, P.A. (1987). The psychology of reading and language comprehension. Boston: Allyn and Bacon.

    Google Scholar 

  • Kintsch, W. (1982). Text representations. In W. Otto & S. White (Eds.), Reading expository material (pp. 87–102). New York: Academic Press.

    Google Scholar 

  • Koulaidis, V., & Tsatsaroni, A. (1996). A pedagogical analysis of science textbooks: How can we proceed? Research in Science Education, 26(1), 55–71.

    Google Scholar 

  • Kuhn, D. (1993). Connecting scientific and informal reasoning. Merrill-Palmer Quarterly, 39(1), 74–103.

    Google Scholar 

  • Lerner, L.S., & Bennetta, W.J. (1988). The treatment of theory in textbooks. The Science Teacher, 55(4), 37–41.

    Google Scholar 

  • Linn, M.C., Clement, C., Pulos, S., & Sullivan, P. (1989). Scientific reasoning during adolescence: The influence of instruction in science knowledge and reasoning strategies. Journal of Research in Science Teaching, 26, 171–187.

    Google Scholar 

  • Lumpe, A.T., & Beck, J. (1996). A profile of high school biology textbooks using scientific literacy recommendations. The American Biology Teacher, 58(3), 147–153.

    Google Scholar 

  • Mallow, J.V. (1991). Reading science. Journal of Reading, 34, 324–338.

    Google Scholar 

  • Mayer, R.E., Steinhoff, K., Bower, G., & Mars, R. (1995). A generative theory of textbook design: Using annotated illustrations to foster meaningful learning of science text. Educational Technology Research and Development, 43(1), 31–43.

    Google Scholar 

  • McDowell, J. (1992, May/June). Breakfast of Champions. Equinox, 11(3), 17.

    Google Scholar 

  • McFadden, C.P., Morrison, E.S., Armour, N., Hammond, A.R., Haysom, J., Moore, A., et al. (1989). Science Plus technology and society 7. Toronto: Harcourt Brace Jovanovich.

    Google Scholar 

  • McFadden, C.P., Morrison, E.S., Armour, N., Moore, A., Nicoll, E.M., & Smyth, M.M. (1989). SciencePlus technology and society 8. Toronto: Harcourt Brace Jovanovich.

    Google Scholar 

  • McFadden, C.P., Morrison, E.S., Armour, N., Churcher, E., Haysom, J., & Moore, A. (1989). SciencePlus technology and society 9. Toronto: Harcourt Brace Jovanovich.

    Google Scholar 

  • McGinn, M.K., & Roth, W.-M. (1999). Preparing students for competent scientific practice: Implications of recent research in science and technology studies. Educational Researcher, 28(3), 14–24.

    Google Scholar 

  • Meyer, L.A., Crummey, L., & Greer, E. (1988). Elementary science textbooks: Their contents, text characteristics, and comprehensibility. Journal of Research in Science Teaching, 25, 435–463.

    Google Scholar 

  • Musheno, B.V., & Lawson, A.E. (1999). Effects of learning cycle and traditional text on comprehension of science concepts by students at differing reasoning levels. Journal of Research in Science Teaching, 36, 23–37.

    Google Scholar 

  • Myers, G. (1991). Lexical cohesion and specialized knowledge in science and popular science texts. Discourse Processes, 14, 1–26. National Science Board. (1998). Science and engineering indicators: 1998 (NSB 98-1). Arlington, VA: National Science Foundation.

    Google Scholar 

  • Neuman, S.B., & Dickinson, D.K. (Eds.). (2001). Handbook of early literacy research. New York: Guilford.

    Google Scholar 

  • New animal species found in Vietnam. (1992). The Evening Telegram [St. John’s, NL], p. 12.

    Google Scholar 

  • Norris, S.R (1992). Practical reasoning in the production of scientific knowledge. In R.A. Duschl & R.J. Hamilton (Eds.), Philosophy of science, cognitive psychology, and educational theory and practice (pp. 195–225). Albany, NY: SUNY Press.

    Google Scholar 

  • Norris, S.P., & Phillips, L.M. (1994). Interpreting pragmatic meaning when reading popular reports of science. Journal of Research in Science Teaching, 31, 947–967.

    Google Scholar 

  • Norris, S.P., Phillips, L.M., & Korpan, C.A. (2003). University students’ interpretation of media reports of science and its relationship to background knowledge, interest, and reading difficulty. Public Understanding of Science, 12, 123–145.

    Google Scholar 

  • Oldfather, P., & Dahl, K. (1994). Toward a social constructivist reconceptualization of intrinsic motivation for literacy learning. Journal of Reading Behavior, 26, 139–158.

    Google Scholar 

  • O’Neill, P. (1996). Fictions of discourse: Reading narrative theory. Toronto: University of Toronto Press.

    Google Scholar 

  • Ornstein, A.C. (1992). The textbook curriculum. Educational Horizons, 70(4), 167–169.

    Google Scholar 

  • Pressley, M., Johnson, C.J., Symons, S., McGoldrick, J.A., & Kurita, J.A. (1989). The challenge of classroom strategy. Elementary School Journal, 90, 3–22.

    Google Scholar 

  • Roberts, D.A., Durward, W.C., Grace, E.S., Krupa, G., Krupa, M., Hirsch, A.J., et al. (1989). Science directions 7. Edmonton: John Wiley.

    Google Scholar 

  • Roberts, D.A., Winter, M.K., Gore, G.R., Grace, E.S., Lang, H.M., & MacLean, W. (1991)Science directions 8. Edmonton: John Wiley.

    Google Scholar 

  • Roberts, D.A., Winter, M.K., Bullard, D., Hirsch, A.J., Gore, G.R., Grace, E.S., et al. (1991). Science directions 9. Edmonton: John Wiley.

    Google Scholar 

  • Scruggs, M.M. (1988). What research says about textbooks. Science and Children, 25(4), 24–25.

    Google Scholar 

  • Select Committee on Science and Technology, House of Lords. (2000). Science and society (Session 1999–2000, 3rd report). London: The Stationary Office.

    Google Scholar 

  • Shamos, M.H. (1995). The myth of scientific literacy. New Brunswick, NJ: Rutgers University Press.

    Google Scholar 

  • Silverman, D. (2002). Analyzing talk and text. In N.K. Denzin & Y.S. Lincoln (Eds.), Handbook of qualitative research (2nd ed., pp. 821–834). Thousand Oaks, CA: Sage.

    Google Scholar 

  • Spiegel, G.F., Jr., & Barufaldi, J.P. (1994). The effects of a combination of text structure awareness and graphic postorganizers on recall and retention of science knowledge. Journal of Research in Science Teaching, 31, 913–932.

    Google Scholar 

  • Staver, J.R., & Bay, M. (1987). Analysis of the project synthesis goal cluster orientation and inquiry emphasis of elementary science textbooks. Journal of Research in Science Teaching, 24, 629–643.

    Google Scholar 

  • Stein, S.J., & McRobbie, C.J. (1997). Students’ conceptions of science across the years of schooling. Research in Science Education, 27, 611–628.

    Google Scholar 

  • Taylor, P. (1992). Researchers take theory on cow’s milk-diabetes link a step farther. Globe and Mail [Toronto], pp. A1, A5.

    Google Scholar 

  • Toulmin, S.E. (1958). The uses of argument. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • van Eemeren, F.H., Grootendorst, R., Blair, J.A., & Willard, CA. (Eds.). (1995). Proceedings of the Third ISSA Conference on Argumentation. Amsterdam: International Centre for the Study of Argumentation.

    Google Scholar 

  • van Peer, W., & Chatman, S. (Eds.). (2001). New perspectives on narrative perspective. Albany, NY: State University of New York Press.

    Google Scholar 

  • Walpole, S. (1998). Changing texts, changing thinking: Comprehension demands of new science textbooks. The Reading Teacher, 52(4), 358–369.

    Google Scholar 

  • Wandersee, J.H. (1988). Ways students read texts. Journal of Research in Science Teaching, 25, 69–84.

    Google Scholar 

  • Watters, J.J., & English, L.D. (1995). Children’s application of simultaneous and successive processing in inductive and deductive reasoning problems: Implications for developing scientific reasoning skills. Journal of Research in ScienceTeaching, 32(7), 699–714.

    Google Scholar 

  • Weaver, C.A., III, & Kintsch, W. (1991). Expository text. In R. Barr, M.L. Kamil, P. Mosenthal, & P.D. Pearson (Eds.), Handbook of reading research (Vol. 2, pp. 230–245). White Plains, NY: Longman.

    Google Scholar 

  • Weinhouse, B. (1992). Weather can make you sick. Redbook, July, p. 24.

    Google Scholar 

  • Woods, J., & Walton, D. (1982). Argument: The logic of the fallacies. Toronto: McGraw-Hill Ryerson.

    Google Scholar 

  • Yager, R.E. (1983). The importance of terminology in teaching K-12 science. Journal of Research in Science Teaching, 20, 577–588.

    Google Scholar 

  • Yore, L.D. (1991). Secondary science teachers’ attitudes toward and beliefs about science reading and science textbooks. Journal of Research in Science Teaching, 26(1), 55–72.

    Google Scholar 

  • Yore, L.D., Craig, M.T., & Maguire, T.O. (1998). Index of science reading awareness: An interactive- constructive model, test verification, and Grades 4–8 results. Journal of Research in Science Teaching, 35, 27–51.

    Google Scholar 

  • Yore, L.D., & Shymansky, J.A. (1991). Reading in science: Developing an operational conception to guide instruction. Journal of Science Teacher Education, 2, 29–36.

    Google Scholar 

  • Young, P. (1992). Reader-friendly science. Science Scope, 16(1), 22–24.

    Google Scholar 

  • Zimmerman, C., Bisanz, G.L., & Bisanz, J. (1998). Everyday scientific literacy: Do students use information about the social context and methods of research to evaluate news briefs about science? The Alberta Journal of Educational Research, 44(2), 188–207.

    Google Scholar 

  • Zimmerman, C., Bisanz, G.L., Bisanz, J., Klein, J.S., & Klein, P. (2001). Science at the supermarket: A comparison of what appears in the popular press, experts’ advice to readers, and what students want to know. Public Understanding of Science, 10, 37–58.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Penney, K., Norris, S.P., Phillips, L.M. et al. The Anatomy of Junior High School Science Textbooks: An Analysis of Textual Characteristics and a Comparison to Media Reports of Science. Can J Sci Math Techn 3, 415–436 (2003). https://doi.org/10.1080/14926150309556580

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14926150309556580

Navigation