Skip to main content

Advertisement

Log in

Teaching and Learning High School Physics in Kenyan Classrooms Using Analogies

  • Article
  • Published:
Canadian Journal of Science, Mathematics and Technology Education Aims and scope Submit manuscript

Abstract

This study provides insights into the nature of the analogies deployed by Kenyan physics teachers and generated by students in class. The analogies looked at (both teacher- and student-generated) were largely environmental (drawn from students’ socio-cultural environment), anthropomorphic (life and human characteristics ascribed to analogues), and to a limited extent, scientific (analogue and target are science concepts). In some cases, anthropomorphic analogies proved problematic for students, sometimes resulting in serious misconceptions. Good analogy use is based on clear identification of matching and non-matching features of the analogue-target structure. Several models, including the General Model for Analogy Teaching (GMAT), Teaching with Analogy (TWA) and Working with Analogies (WWA) are discussed in this paper, with a view to providing a lens through which analogies can be understood. To transform students’ understanding from cultural belief systems to the science system of thinking, while respecting their socio-cultural backgrounds, can be a daunting task. Where it proves problematic for the students to ‘decamp’ from indigenous ways of reasoning, then collateral learning may be considered.

Résumé

Une analogie comprend deux composantes : l’analogue, c’est-à-dire la notion familière ou connue, et la cible, c’est-à-dire le concept nouveau, non encore familier. Elle est un outil fort utilisé en enseignement des matières scientifiques. Nécessairement, les analogues et les cibles sont tirés de domaines différents; seules les similarités sont exploitées pour entraîner une compréhension de la cible grâce au repérage, dans l’analogue, des caractéristiques ou attributs ayant des correspondants dans la cible. En d’autres termes, on se sert de la compréhension de l’analogue pour expliquer la cible.

Les analogies ont des caractéristiques différentes selon la personne qui les a formulé et le contexte dans lequel elles sont utilisées. Le cas illustré dans cet article vise à éclairer la nature des analogies que les enseignants de physique kényens utilisent pour expliquer les concepts de la physique à leurs élèves de niveau deux (2) (≪ Form 2 ≫, équivalent de la troisième secondaire). Il vaut la peine de souligner que les écoles du Kenya suivent un curriculum commun centralisé et qu’elles ont l’anglais comme langue d’enseignement. La langue d’instruction est un facteur clé qui influence la nature des analogies utilisées par les enseignants et les étudiants.

Les données ont été recueillies grâce à l’observation de trois classes de physique de niveau deux (2) sur une période de 14 semaines. De plus, les manuels, les programmes et les annotations des enseignants ont été recueillis et analysés. On a également réalisé des entrevues informelles avec les enseignants et avec certains étudiants ou groupes d’étudiants choisis au hasard. Au cours de la période d’observation, trois sujets principaux ont été enseignés : l’électricité, la cinématique et les machines. La plupart des analogies enregistrées concernaient l’électricité. Onze d’entre elles sont analysées dans cet article selon les modèles suivants : le GMAT de Zeitoun (Model for Analogical Teaching) (1984), le TWA de Glynn (Teaching with Analogies) (1991) et le WWA de Nashon (Working with Analogies) (2000).

Les analogies (générées soit par les enseignants, soit par les étudiants) étaient en grande partie environnementales (dérivées du milieu socioculturel de l’étudiant), anthropomorphiques (attribuant à l’analogue des caractéristiques humaines ou biólogiques) et, dans une faible mesure, scientifiques (où l’analogue et la cible sont tous deux des concepts scientifiques). Dans certains cas, les analogies anthropomorphiques se sont avérées difficiles pour les étudiants et ont parfois conduit à de graves erreurs conceptuelles. Dans cet article, les analogies anthropomorphiques sont considérées comme environnementales, car elles restent liées aux contextes locaux et culturels. De telles analogies ne devraient être utilisées que dans le cas où les étudiants n’ont guère une connaissance scientifique préalable suffisante pour qu’on puisse en dériver des analogues. Si les étudiants possèdent déjà cette connaissance, les enseignants devraient s’efforcer d’utiliser ou d’exploiter des analogies scientifiques. On note un manque de systématicité évident dans la construction et l’exposition des analogies chez les enseignants en raison de leur incapacité d’exploiter les modèles structurels théoriques comme le GMAT, le TWA ou le WWA. Peu d’enseignants se sont servis d’une stratégie adéquate pour effectuer le passage de l’anthropomorphique au scientifique. L’auteur recommande que l’analogue et la cible soient dé-liés et que la signification de la cible serve à consolider la solution du problème. Une telle dissociation évitera que les étudiants ne confondent le sens de l’analogue et celui de la cible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, A.F. (1984). Ordinary level physics (4th ed.). London: Heinemann Educational.

    Google Scholar 

  • Anderson, G. (1990). Fundamentals of educational research. Basingstoke: Palmer.

    Google Scholar 

  • Black, D., & Solomon, J. 1987. Can pupils use taught analogies for electric current? School Science Review, 69, 249–254.

    Google Scholar 

  • Brown, D.E. 1993. Refocusing core intuitions: A concretizing role for analogy in conceptual change. Journal for Research in Science Teaching, 30(10). 1273–1290.

    Article  Google Scholar 

  • Brown, D.E., & Clement, J. 1989. Overcoming misconceptions via analogical reasoning: Abstract transfer versus explanatory model construction. Instructional Science, 18, 237–261.

    Article  Google Scholar 

  • Clement, J. 1993. Using bridging analogies and anchoring intuitions to deal with students’ preconceptions. International Journal of Science Teaching, 30(10). 1241–1257.

    Article  Google Scholar 

  • Clement, J.J. 1998. Expert novice similarities and instruction using analogies. International Journal of Science Education, 20(10). 1271–1286.

    Article  Google Scholar 

  • Coetzee, P.H., & Roux, A.P.J. (Eds.). (1998). The African philosophy reader. New York: Routledge.

    Google Scholar 

  • Dagher, Z.R. 1995. Analysis of analogies used by science teachers. Journal of Research in Science Teaching, 32(3). 259–270.

    Article  Google Scholar 

  • Duit, R. 1991. On the role of analogies and metaphors in learning science. Science Education, 75(6). 649–672.

    Article  Google Scholar 

  • Duit, R., Komorek, M., & Wilbers, J. 1997. Studies on educational reconstruction of chaos theory. Research in Science Education, 27(3). 339–357.

    Article  Google Scholar 

  • Duit, R., Roth, W.M., Komorek, M., & Wilbers, J. 1998. Conceptual change cum discourse analysis to understand cognition in a unit on chaotic systems: Towards an integrative perspective on learning science. International Journal of Science Education, 20(9). 1059–1073.

    Article  Google Scholar 

  • Gentner, D., & Gentner, D.R. 1983. Flowing waters or teeming crowds: Mental models of electricity. In D. Gentner & A.L. Stevens (Eds.), Mental models (pp. 99–129). Hillsdale NJ: Lawrence Erlbaum.

    Google Scholar 

  • Glynn, M.S. 1991. Explaining science concepts: A teaching with analogy model. In M.S. Glynn, H.R. Yeany, & K.B. Britton (Eds.), The psychology of learning science (pp. 219–240). Hillsdale, NJ: Laurence Erlbaum.

    Google Scholar 

  • Gunstone, R.F. 1994. The importance of specific science content in the enhancement of metacognition. In P.J. Fensham, R.F. Gunstone, & R.T. White (Eds.), The content of science: A constructivist approach to teaching and learning (pp. 131–146). Washington DC: Falmer.

    Google Scholar 

  • Harrison, A.B., & Treagust, D.F. 1993. Teaching with analogies: A case study in Grade 10 optics. Journal of Research in Science Teaching, 30(10). 1291–1301.

    Article  Google Scholar 

  • Jegede, O.J. 1995. Collateral learning and the eco-cultural paradigm in science and mathematics in Africa. Studies in Science Education, 25, 97–137.

    Article  Google Scholar 

  • Kelly, G.A. (1955). The psychology of personal constructs: A theory of personality (Vol. 1). New York: Norton.

  • Kenya Institute of Education. (1999). Secondary physics: Form 1 pupils’ book (2nd ed.). Nairobi: Kenya Literature Bureau.

    Google Scholar 

  • Lagoke, B.A., Jegede, O. J., & Oyebanji, P.K. 1997. Towards an elimination of the gender gulf in science concept attainment through the use of environmental analogues. International Journal of Science Education, 19(4). 365–380.

    Article  Google Scholar 

  • Merriam, S.B. (1988). Case study in education: A qualitative approach. San Francisco, CA: Jossey-Boss.

    Google Scholar 

  • Mudimbe, V.Y. (1988). The invention of Africa: Gnosis philosophy and the order of knowledge. London: James Currey.

    Google Scholar 

  • Nashon, S.M. 2000. Teaching physics through analogies. OISE Papers In STSE Education, 1, 209–223.

    Google Scholar 

  • Schwartz, D.L. 1993. The construction and analogical transfer of symbolic visualizations. Journal of Research in Science Teaching, 30(10). 1309–1325.

    Article  Google Scholar 

  • Stake, R. 1978. The case study method in social inquiry. Educational Researcher, (February), 5–8.

    Google Scholar 

  • Stake, R. 1988. Case study methods in educational research: Seeking sweet waters. In R. Jaeger (Ed.), Complementary methods for research in education (pp. 253–265). Washington DC: American Education Research Association.

    Google Scholar 

  • Stake, R. 1994. Case studies. In N. Denzin & Y.S. Lincoln (Eds.), Handbook of qualitative research (pp. 236–247). London: Sage.

    Google Scholar 

  • Stallings, J., & Mohlman, G. 1988. Classroom observation techniques. In J.P. Keeves (Ed.), Educational research, methodology and measurement: An international handbook (pp. 469–474). Oxford: Pergamon.

    Google Scholar 

  • Stavy, R. 1991. Using analogy to overcome misconceptions about matter. Journal of Research in Science Teaching, 28(4). 305–313.

    Article  Google Scholar 

  • Stenhouse, L. 1988. Case study methods. In J.P. Keeves (Ed.), Educational research methodology and measurement: An international handbook (pp. 49–53). Oxford: Pergamon.

    Google Scholar 

  • Sternberg, R.J. 1977. Component process in analogical reasoning. Psychological Review, 84(4). 353–378.

    Article  Google Scholar 

  • Thiele, R.B., & Treagust, D.F. 1994. An interpretive examination of high school chemistry teachers’ analogical explanation. Journal of Research in Science Teaching, 31(3). 227–242.

    Article  Google Scholar 

  • Treagust D.F., Duit, R., Joslin, P., & Landauer, I. 1992. Science teachers’ use of analogues: Observations from classroom practice. International Journal of Science Education, 14(4). 413–421

    Article  Google Scholar 

  • Watts, M., & Bentley, D. 1994. Humanising and feminising school science: Reviving anthropomorphic and animistic thinking in constructivist science education. International Journal of Science Education, 16(1). 83–97.

    Article  Google Scholar 

  • Weller, C.M. 1970. The role of analogy in teaching science. Journal of Research in Science Teaching, 7, 113–119.

    Article  Google Scholar 

  • Willner, A. 1964. Experimental analysis of analogical reasoning. Psychological Reports, 15, 479–494.

    Article  Google Scholar 

  • Wong, E.D. 1993. Understanding the generative capacity of analogies as a root for explanation. Journal of Research in Science Teaching, 30(10). 1259–1272.

    Article  Google Scholar 

  • Zeitoun, H.H. 1984. Teaching scientific analogies: A proposed model. Research in Science and Technological Education, 2(2). 107–125.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nashon, S.M. Teaching and Learning High School Physics in Kenyan Classrooms Using Analogies. Can J Sci Math Techn 3, 333–345 (2003). https://doi.org/10.1080/14926150309556572

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14926150309556572

Navigation