Skip to main content

Advertisement

Log in

Developing Classroom-Focused Research in Technology Education

  • Article
  • Published:
Canadian Journal of Science, Mathematics and Technology Education Aims and scope Submit manuscript

Abstract

During the last 10 years, curriculum documents in Australia, the United Kingdom, the United States, Canada, Hong Kong, and New Zealand have emphasized the importance of students’ developing technological literacy. In utilizing research findings to consider future curriculum needs, there is the danger that the field may come to be understood in light of the research undertaken, not in light of what needs to be done. Past research has tended to focus on curriculum issues and the defining of the subject. If technology education is to advance as a curriculum area of worth and as a focus of research, then much more of our research effort must be on student and teacher learning in technology. This paper argues that classroombased research must become the focus of research over the next 10 years. While there is published research on what students do when involved in technological activities, we still lack significant research on students’ learning in technology and on ways in which this learning can be enhanced. Teacher and student conceptualization of technology is a complex issue and requires an understanding of the many factors that influence it. Classroom culture and student expectations appear to influence strongly the way in which students carry out their technological activities. Student learning in technology can be enhanced by effective formative interactions occurring between teacher and student and between student and student. Part of technology assessment should provide evidence of progression in learning, about which we currently know very little. This paper describes some fruitful areas of classroom-based research that could inform technology curriculum development.

Résumé

Au cours des 10 dernières années, la documentation sur les curricula en Australie, au Royaume-Uni, aux États-Unis, au Canada, à Hong Kong et en Nouvelle-Zélande ont mis l’accent sur l’importance de l’alphabétisation technologique des étudiants. Par le passé, les recherches étaient surtout centrées sur des questions de curricula et de définition du sujet. Si nous voulons que l’enseignement des technologies devienne un domaine d’apprentissage significatif chez tous les étudiants, il sera nécessaire de concentrer ultérieurement nos efforts sur la recherche dans les salles de classe. En effet, bien que les travaux sur la définition du sujet soient encore très importants, on en est maintenant arrivé au point où l’enseignement des technologies doit surtout mettre l’accent sur un apprentissage accru dans la salle de classe. Cette insistance sur les classes de technologies met en évidence quatre aspects importants et reliés entre eux: l’apprentissage des technologies chez les étudiants, l’évaluation, les interactions particulièrement formatrices et le développement de notions de progression. Les premières recherches ont montré que, si on concentre les efforts sur ces aspects, il est possible d’améliorer l’apprentissage des étudiants et de fournir une base solide pour développer les curriculums.

Notre recherche montre que, pour améliorer et soutenir l’apprentissage des technologies, il est nécessaire d’axer le savoir des enseignants sur les résultats d’apprentissages technologiques spécifiques et détaillés, conjointement à des approches pédagogiques adéquates. Il est particulièrement important d’utiliser un cadre bien défini pour centrer l’attention des enseignants sur les aspects conceptuels, procéduraux, sociétaux et techniques de l’apprentissage des technologies chez les étudiants. Nous ne concevons pas ce cadre comme absolu et défini dans ses moindres détails, mais bien comme un outil analytique général susceptible d’aider les enseignants à réfléchir sur les caractéristiques de l’apprentissage des technologies. Il s’agit en fait d’aider les enseignants à réfléchir sur ce que les étudiants peuvent contribuer à la classe et comment cette © 2003 Canadian Journal of Science, Mathematics and Technology Education contribution peut servir de base sur laquelle on peut construire. L’étude met en évidence la nécessité de se concentrer sur certains aspects essentiels de l’enseignement, de l’apprentissage et de l’évaluation. Grâce au cadre proposé, les enseignants sont passés de l’utilisation de concepts technologiques généraux à l’utilisation de concepts plus spécifiques liés à différents secteurs technologiques. Les enseignants ont pu choisir des tâches plus adéquates, qui permettaient aux étudiants d’accroître leurs connaissances des technologies. Le fait de passer d’un type d’enseignement où l’on fournit une expérience technologique à un autre type où l’on donne aux étudiants l’occasion de développer des résultats d’apprentissages technologiques, est significatif. Les enseignants se sont sentis plus sûrs d’eux lors des interactions formatrices, en particulier lorsqu’il s’agissait de réagir de façon adéquate, sur des questions technologiques, auprès des apprenants. Nous avons donné des conseils lorsqu’ils étaient jugés nécessaires, ce qui a mené à des interactions plus significatives. Non seulement avons-nous mis d’avantage l’accent sur les échanges permettant aux étudiants de développer des compétences techniques particulières, mais aussi sur les aspects conceptuels et procéduraux, plutôt que sur les aspects sociaux et de gestion. De plus, nous avons accordé moins d’importance aux éloges comme seule forme d’interaction formatrice pour insister sur la nécessité d’aider les étudiants à aller de l’avant, à réfléchir et à évaluer leurs propres progrès. Au résultat, nous avons pu noter chez les étudiants une meilleure compréhension de la nature des technologies, une meilleure compréhension des concepts et des procédés, une utilisation plus appropriée et plus prolifique du vocabulaire technique, une meilleure compréhension du but des activités, une certaine capacité d’identifier leurs propres lacunes, une motivation accrue, un plus grand intérêt pour les technologies et une transposition plus efficace des connaissances provenant d’autres parties du curriculum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bell, B., & Cowie, B. (1997). Formative assessment and science education. Research report of the Learning in Science Project (Assessment) for the Ministry of Education. Hamilton, New Zealand: Centre for Science, Mathematics and Technology Education Research, University of Waikato.

    Google Scholar 

  • Black, P. (1998). Testing: Friend or foe? Theory and practice of assessment and testing. London: Falmer Press.

    Google Scholar 

  • Black, P., Brown, M., Simon, S., & Blondel, J. (1996). Progression in learning: Issues in evidence in mathematics and science. In M. Hughes (Series Ed.), Teaching and learning in changing times (pp. 153–171). Oxford: Blackwell.

    Google Scholar 

  • Black, P., & Wiliam, D. (1998). Assessment and classroom learning. Assessment in Education, 5(1), 7–74.

    Article  Google Scholar 

  • Brown, J.S., Collins A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educational Researcher, 18(1), 32–42.

    Article  Google Scholar 

  • Bruner, J. (1968). Towards a theory of instruction. New York: W.W. Norton.

    Google Scholar 

  • Butler, R. (1987). Task-involving and ego-involving properties of evaluation: Effects of different feedback conditions on motivational perceptions, interest and performance. Journal of Education Psychology, 79(4), 474–482.

    Article  Google Scholar 

  • Carr, M., McGee, C., Jones, A., McKinley, E., Bell, B., Barr, H., & Simpson, T. (2000). The effects of curricula and assessment on pedagogical approaches and on education outcomes. Wellington, New Zealand: Ministry of Education.

    Google Scholar 

  • Crooks, T.J. (1988). The impact of classroom evaluation practices on students. Review of Educational Research, 58(4), 438–481.

    Article  Google Scholar 

  • Crooks, T., & Flockton, L. (2000). Technology assessment results: National education monitoring report. Dunedin, New Zealand: Education Assessment Research Unit, University of Otago.

    Google Scholar 

  • de Vries, M. (2000). Can we train researchers and teachers to make a team? Win-win strategies in technology education. Paper presented to the 1st Biennial International Conference on Technology Education Research, Gold Coast, Australia, 1–3. December.

    Google Scholar 

  • Gilbert, J.K. (1994). The interface between science and technology in schools. SAMEpapers 1994. Hamilton, New Zealand: Centre for Science, Mathematics and Technology Education Research, University of Waikato, 144–164.

    Google Scholar 

  • Gipps, C. (2000). Classroom assessment and feedback strategies of ‘expert’ elementary teachers. Paper presented at AERA Conference, New Orleans, 24–27. April.

    Google Scholar 

  • Goodson, I.F. (1985). Social histories of the secondary curriculum. Lewes: Falmer Press.

    Google Scholar 

  • Gustafson, B., & Rowell, P. (2001). Design technology with children—Productive pathways for teachers. Paper presented at National Association for Research in Science Teaching Conference, St Louis.

    Google Scholar 

  • Hansen, R., & Froelich, M. (1994). Defining technology and technological education: A crisis, or cause for celebration. International Journal Technology and Design Education, 4(2), 79–207.

    Article  Google Scholar 

  • Hennessy, S. (1993). Situated cognition and cognitive apprenticeship: Implications for classroom learning. Studies in Science Education, 22, 1–41.

    Article  Google Scholar 

  • Hennessy, S., McCormick, R., & Murphy, P. (1993). The myth of general problem solving capability: Design and technology as an example. The Curriculum Journal, 4(1), 73–89.

    Article  Google Scholar 

  • Jones, A. (1997). Recent research in student learning of technological concepts and processes. International Journal of Technology and Design Education, 7(1-2), 83–96.

    Article  Google Scholar 

  • Jones, A. (1999). the influence of teachers’ subcultures on curriculum innovation. In J. Loughran (Ed.), Researching teaching (pp. 155–171). London: Falmer Press.

    Google Scholar 

  • Jones, A. (2001). Developing research in technology education. Research in Science Education, 31(1), 3–14.

    Article  Google Scholar 

  • Jones, A., & Carr, M. (1993). Analysis of student technological capability (vol. 2). Working papers of the Learning in Technology Education Project. Hamilton, New Zealand: Centre for Science and Mathematics Education Research, University of Waikato.

  • Jones, A., & Carr, M. (1994). Student technological capability: Where do we start? SAMEpapers 1994. Hamilton, New Zealand: Centre for Science and Technology Education Research, University of Waikato, 165–186.

    Google Scholar 

  • Jones, A., Mather, V., & Carr, M. (1995). Issues in the practice of technology education. Hamilton, New Zealand: Centre for Science and Technology Education Research, University of Waikato.

    Google Scholar 

  • Jones, A., & Moreland, J. (2001). Frameworks and cognitive tools for enhancing practising teachers’ pedagogical content knowledge. SAMEpapers 2001. Centre for Science and Technology Education Research, University of Waikato, 238–264.

    Google Scholar 

  • Kimbell, R. (1994). Tasks in technology. An analysis of their purposes and effects. International Journal Technology and Design Education, 4(3), 241–256.

    Article  Google Scholar 

  • Kimbell, R. (1997). Assessing technology: International trends in curriculum and assessment. Buckingham: Open University Press.

    Google Scholar 

  • Kimbell, R., Stables, K., & Green, R. (1996). Understanding practice in design and technology. Buckingham: Open University Press.

    Google Scholar 

  • Kimbell, R., Stables, K., Wheeler, T., Wosniak, A., & Kelly, V. (1991). The assessment of performance in design and technology. London: Schools Examination and Assessment Council.

    Google Scholar 

  • Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Lewis, T. (1999). Research in technology education—Some areas of need. Journal of Technology Education, 10, 41–56.

    Article  Google Scholar 

  • McCormick, R., Murphy, P., & Harrison, M. (1992). Teaching and learning technology. London: Addison-Wesley.

    Google Scholar 

  • McCormick, R., Murphy, P., & Hennessy, S. (1994). Problem solving processes in technology education: A pilot study. International Journal Technology and Design Education, 4(1), 5–34.

    Article  Google Scholar 

  • McCormick, R., Sparkes, J., & Newey, C. (Eds.). (1992). Technology for technology education. London: Addison-Wesley.

    Google Scholar 

  • Mavromattis, Y. (1997). Understanding assessment in the classroom—Phases of the assessment process: The assessment episode. Assessment in Education, 4(3), 381–399.

    Article  Google Scholar 

  • Mitcham, C. (1994). Thinking through technology: The path between engineering and philosophy. Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Moreland, J. (1998). Technology education teacher development: The importance of experiences in technological practice. Unpublished MEd thesis. Hamilton, New Zealand: University of Waikato.

    Google Scholar 

  • Moreland, J., & Jones, A. (2000). Emerging assessment practices in an emergent curriculum: Implications for technology. International Journal of Technology and Design Education, 10, 283–305.

    Article  Google Scholar 

  • Moreland, J., Jones, A., & Forret, M. (2001) Making progress: Learning in technology. Position paper for Technology Exemplar Development. Hamilton, New Zealand: Centre for Science and Technology Education Research, University of Waikato.

    Google Scholar 

  • Moreland, J., Jones, A., & Northover, A. (2001). Enhancing teachers’ technological knowledge and assessment practices to enhance student learning in technology: A two-year classroom study. Research in Science Education, 31(1), 155–176.

    Article  Google Scholar 

  • Murphy, P., McCormick, R., & Davidson, M. (1996). Problem solving in design and technology: Uncharted waters. Buckingham: Open University Press.

    Google Scholar 

  • Northover, B.A. (1997). Teacher development in biotechnology: Teachers’ perceptions and practice. Unpublished MEd thesis. Hamilton, New Zealand: University of Waikato.

    Google Scholar 

  • Olson, J., & Henning Hansen, K. (1994). Research on technology education. In D. Layton (Ed.), Innovations in science and technology education (vol. 5, pp. 225–239). Paris: UNESCO Publishing.

    Google Scholar 

  • Paechter, C. (1991). Subject subcultures and the negotiation of open work: Conflict and cooperation in cross-curricular. Paper presented to St. Hilda’s conference, Warwick University.

    Google Scholar 

  • Perrina, S. (1998). The politics of research in technology education: A critical content and discourse analysis of the Journal of Technology Education, volumes 1–8. Journal of Technology Education, 10, 27–57.

    Google Scholar 

  • Pinch T., Hughes T., & Bijker, W. (1987). The social construction of technological systems. London: MIT Press.

    Google Scholar 

  • Rogoff, B. (1990). Apprenticeship in thinking: Cognitive development in social context. Oxford: Oxford University Press.

    Google Scholar 

  • Sadler, D. (1998). Formative assessment: Revisiting the territory. Assessment in Education, 5(1), 77–84.

    Article  Google Scholar 

  • Wertsch, J.V. (1991). Voices of the mind: A socio-cultural approach to mediated action. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Wiliam, D. (1994). Assessing authentic tasks: Alternatives to mark-schemes. Nordic Studies in Mathematics Education, 2(1), 48–67.

    Google Scholar 

  • Zuga, K. (1997). An analysis of technology education research in the United States based upon an historical overview and review of contemporary curriculum research. International Journal of Technology and Design Education, 7, 203–217.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, A., Moreland, J. Developing Classroom-Focused Research in Technology Education. Can J Sci Math Techn 3, 51–66 (2003). https://doi.org/10.1080/14926150309556551

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14926150309556551

Navigation