Skip to main content
Log in

Analyse des problèmes de géométrie et apprentissage de la preuve au secondaire

  • Article
  • Published:
Canadian Journal of Science, Mathematics and Technology Education Aims and scope Submit manuscript

Résumé

Le présent article rend compte de l’élaboration d’une grille d’analyse des problèmes de géométrie, et de sa mise à l’épreuve par la classification des problèmes et exercices de géométrie synthétique dans une collection de manuels du secondaire parmi les plus utilisées au Québec. Le cadre conceptuel sur lequel s’appuie cette élaboration s’inspire principalement des travaux de Balacheff (1987), Barbin (1988), Brousseau (1998), Hanna (1995) et Rouche (1989), et débouche sur une typologie des preuves de géométrie. La classification des problèmes à partir de cette grille et l’analyse qui en découle nous a permis de conclure sur les aspects de l’apprentissage de la preuve que nous évaluons comme mal « gérés » dans la collection: transition non suffisamment graduelle du sensible au formel (peu de problèmes qui sollicitent une validation hybride, niveau de formalisation trop longtemps stationnaire), prépondérance des applications directes et des déductions locales sur les séquences déductives, intérêt et mode de présentation des résultats qui ne favorisent pas une « attitude de preuve ».

Executive Summary

In this research project, I have attempted to understand how the notion of proof develops during the secondary school student’s learning process. From this perspective, I have first examined official texts in order to identify not only the objectives of the Québec Ministry of Education (MEQ) yearly curriculum (1993–1996) dealing with the learning of proof but also how such curricula propose to accomplishing these objectives. According to these curricula, the learning of proof occurs primarily through the study of geometry, in a more general context ofproblem solving. The next step was to understand, on a second level, how this learning has been transferred into textbooks. In that connection, it was necessary to be able to account for learning progression, in terms of continuity-discontinuity. As the objectives of the curriculum emphasize problem solving, this phase of my analysis required a close analysis of geometry problems. With the objective of developing an analytical grid to be applied to synthetic geometry problems in relation to the type of proof they require, I have attempted to synthesize the reflections on proof contained in the work of Balacheff (1987), Barbin (1988), Brousseau (1998), Hanna (1995), and Rouche (1989), on the basis of what I call ‘schemas of bipolarization.’ Using the schémas suggested by these authors, I then built both a typology of proof and, on the basis of this typology, an analytical grid proper. Both the typology and the grid were developed from the perspective of sources of validation that students are capable of drawing on. The grid broke down all of the problems and exercises of synthetic geometry into seven categories: the direct application (nothing to be validated); the spontaneously seeing the general in one particular case and empirical induction (source of validation: the ‘tangible’ or the ‘perceptible’); mental experience and the empirico-deductive argument (dual sources of validation: reasoned argumentation based on the perceptible); and, finally, the local deduction and the deductive chain or linkage (source of validation: logico-deductive reasoning). I tested out this grid by classifying problems and exercises of synthetic geometric contained in a collection of textbooks among those most widely used in Québec for all the secondary school grades (Secondary I to V, students ages 12 to 17). Based on an analysis of the results, I developed a series of conclusions about aspects of the learning of proof that I view as being poorly handled in these textbooks, including an insufficiently gradual transition from the perceptible to the formal (very few problems that draw on a hybrid validation; over-long stationary formalization; a break during Secondary V); the predominance of direct applications and local deductions over deductive sequences; and a focus and mode of presentation of results that do not foster a ‘proof-oriented attitude.’ This analysis also gave me an opportunity to examine various possible interpretations of what the MEQ curriculum has termed îlot déductif (or ‘local axiomatic’) and the role that has been planned for the geometry of transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Arsac, G. (1998a). Les limites d’un enseignement déductif de la géométric. Petit x, 47, 5–31.

    Google Scholar 

  • Arsac, G. (1998b). Les recherches actuelles sur l’apprentissage de la démonstration et les phénomènes de validation en France. Recherches en didactiques des mathématiques, 9, 247–280.

    Google Scholar 

  • Arsac, G. et Mante, M. 1997. Situations d’initiation au raisonnement déductif. Educational Studies in Mathematics, 33, 21–43.

    Article  Google Scholar 

  • Balacheff, N. 1987. Processus de preuve et situations de validation. Educational Studies in Mathematics, 18, 147–176.

    Article  Google Scholar 

  • Barbin, E. 1988. La démonstration mathématique: significations épistémologiques et questions didactiques. Bulletin de l’APMEP, 36, 591–620.

    Google Scholar 

  • Bkouche, R. (1988a). Enseigner la géométric pourquoi? [Feuillet.] Lille (France): IREM de Lille.

    Google Scholar 

  • Bkouche, R. (1988b). De la démonstration. [Feuillet.] Montpellier (France): Colloque Inter-IREM de géométric

    Google Scholar 

  • Breton, G. (en coll. avec Deschênes, A., Ledoux, A. et Côté, B.). 1997. Réflexions mathématiques. Montréal: Les éditions CEC.

    Google Scholar 

  • Breton, G. (en coll. avec Fortin, D.). 1994. Carrousel mathématique. Montréal: Les éditions CEC.

    Google Scholar 

  • Brousseau, G. 1998. Théorie des situations didactiques. Éditions La pensée sauvage, Paris.

    Google Scholar 

  • Chazan, D. 1993. High school geometry students’ justification for their views of empirical evidence and mathematical proof. Educational Studies in Mathematics, 24, 359–387.

    Article  Google Scholar 

  • Choquet, G. 1964. L’enseignement de la géométric Paris: Éditions Hermann.

    Google Scholar 

  • Douek, N. 1999. Some remarks about argumentation and mathematical proof and their educational implications. Dans Proceedings of the Conference on European Research in Mathematics Education (CERME-I), Osnabrück (Allemagne) (vol. 1, pp. 128–142).

    Google Scholar 

  • Duval, R. 1991. Structure du raisonnement déductif et apprentissage de la démonstration. Educational Studies in Mathematics, 22, 233–261.

    Article  Google Scholar 

  • Duval, R. 1992. Argumenter, démontrer, expliquer: continuité ou rupture cognitive? Petit x, 31, 37–61.

    Google Scholar 

  • Fischbein, E. 1987. Intuition in science and mathematics: An educational approach. Dordrecht (Pays-Bas): D. Reidel Publishing.

    Google Scholar 

  • Fischbein, E. et Kedem, I. 1982. Proof and certitude in the development of mathematical thinking. Dans A. Vermandel (dir.), Proceedings of the Sixth International Conference for the Psychology of Mathematics Education (pp. 128–131). Anvers (Pays-Bas): Universitaire Instelling.

    Google Scholar 

  • Gouvernement du Québec. (1965–1966). Rapport de la Commission royale d’enquête sur l’enseignement au Québec (Rapport Parent), 1964. (A.M. Parent, Dir.). Québec: Auteur.

  • Hanna, G. 1995. Challenges to the importance of proof. For the Learning of Mathematics, 75(3), 42–49.

    Google Scholar 

  • Hanna, G. 1983. Rigorous proof in mathematics education. Toronto: OISE Press.

    Google Scholar 

  • Hilbert, D. 1971. Lesfondements de la géométrie (P. Rossier, Éd.; G. Teubner, Trad.). Paris: Dunod.

  • Lakatos, I. 1976. Proofs and refutations. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Lehman, D. 1989. La démonstration. [Feuillet.] Lille: IREM de Lille.

    Google Scholar 

  • Ministère de l’Éducation du Québec [MEQ]. (1993–1996). Programmes d’études en Mathématique 116, Mathématique 216, Mathématique 314, Mathématique 416, Mathématique 436, Mathématique 514, Mathématique 536. Québec: Direction de la formation générate des jeunes, Ministère de l’Éducation du Québec.

    Google Scholar 

  • National Council of Teachers of Mathematics [NCTM]. 1989. Curriculum and evaluation standards for school mathematics. Reston (VA): Auteur.

    Google Scholar 

  • Rouche, N. 1989. Prouver: amener à l’évidence ou contrôler des implications? Dans Actes du 7e colloque inter-IREM: Épistémologie et histoire des mathématiques, Besançon (France) (pp. 8–38).

    Google Scholar 

  • Tanguay, D. 2000. Analyse du développement de la notion de preuve dans une collection du secondaire. Mémoire de maîtrise inédit, Université du Québec à Montréal.

    Google Scholar 

  • Thom, René. 1974. Mathématiques modernes et mathématiques de toujours, suivi de Les mathématiques ≪ modernes ≫, une erreur pédagogique et philosophique? Dans R. Jaulin (Dir.), Pourquoi la mathématique (pp. 39–88). Paris: Éditions 10–18.

    Google Scholar 

  • Thurston, W.P. 1994. On proof and progress in mathematics. Bulletin of the American Mathematical Society, 50, 161–177.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanguay, D. Analyse des problèmes de géométrie et apprentissage de la preuve au secondaire. Can J Sci Math Techn 2, 371–396 (2002). https://doi.org/10.1080/14926150209556527

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14926150209556527

Navigation