Skip to main content
Log in

Symbols and the Bifurcation Between Procedural and Conceptual Thinking

  • Articles
  • Published:
Canadian Journal of Science, Mathematics and Technology Education Aims and scope Submit manuscript

Abstract

Symbols occupy a pivotal position between processes to be carried out and concepts to be thought about. They allow us both to do mathematical problems and to think about mathematical relationships. In this article we consider the discontinuities that occur in the learning path taken by different students, leading to a divergence between conceptual and procedural thinking. Evidence will be given from several different contexts in the development of symbols through arithmetic, algebra, and calculus, then on to the formalism of axiomatic mathematics. This evidence is taken from a number of research studies recently conducted for doctoral dissertations at the University of Warwick by students from the United States, Malaysia, Cyprus, and Brazil, with data collected in the United States, Malaysia, and the United Kingdom. All the studies form part of a broad investigation into why some students succeed, while others fail.

Résumé

Les symboles jouent un rôle central entre les processus à accomplir et les concepts auxquels on doit penser. Ils nous permettent à la fois de résoudre des problèmes mathématiques et de réfléchir aux relations mathématiques. Dans cet article, nous examinons les discontinuités qui apparaissent le long du chemin d’apprentissage emprunté par différents élèves et qui entraînent une divergence entre la pensée conceptuelle et la pensée procédurale. Nous fournirons des exemples tirés de plusieurs contextes différents illustrant l’acquisition des symboles par l’intermédiaire de l’arithmétique, de l’algèbre et du calcul différentiel et intégral, pour ensuite passer au formalisme des mathématiques axiomatiques. Ces exemples proviennent d’un certain nombre d’études menées récemment à l’Université de Warwick par des doctorants américains, malaisiens, chypriotes et brésiliens, et qui portent sur des données recueillies aux États‐Unis, en Malaisie et au Royaume‐Uni. Toutes ces études s’inscrivent dans le cadre d’une vaste recherche visant à déterminer les raisons pour lesquelles certains élèves réussissent alors que d’autres échouent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali, M.B. (1996). Symbolic manipulation related to certain aspects such as interpretations of graphs. Unpublished doctoral dissertation, University of Warwick, Coventry, UK.

    Google Scholar 

  • Ali, M.B., & Tall, D.O. (1996). Procedural and conceptual aspects of standard algorithms in calculus. Proceedings of PME [Psychology of Mathematics Education] 20, Valencia, 2, pp. 19–26.

    Google Scholar 

  • Anderson, C. (1997). Persistent errors in indices: A cognitive perspective. Unpublished doctoral dissertation, University of New England, Armidale, Australia.

    Google Scholar 

  • Comu, B. (1991). Limits. In D.O. Tall (Ed.), Advanced mathematical thinking (pp. 153–166). Dordrecht, Netherlands: Kluwer.

    Google Scholar 

  • Cottrill, J., Dubinsky, E., Nichols, D., Schwingendorf, K., Thomas, K., & Vidakovic, D. (1996). Understanding the limit concept: Beginning with a co-ordinated process schema. Journal of Mathematical Behavior, 15, 167–192.

    Article  Google Scholar 

  • Crowley, L., & Tall, D.O. (1999). The roles of cognitive units, connections and procedures in achieving goals in college algebra. In O. Zaslavsky (Ed.), Proceedings of the 23rd Conference of PME, Haifa, Israel. 2, pp. 225–232.

    Google Scholar 

  • DeMarois, P. (1998). Aspects and layers of the function concept. Unpublished doctoral dissertation, University of Warwick, Coventry, UK

    Google Scholar 

  • DeMarois, P., & Tall, D.O. (1999) Function: Organizing principle or cognitive root?. In O. Zaslavsky (Ed.), Proceedings of the 23rd Conference of PME, Haifa, Israel. 2, pp. 257–264.

    Google Scholar 

  • Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In D.O. Tall (Ed.), Advanced mathematical thinking (pp. 95–123). Dordrecht, Netherlands: Kluwer.

    Google Scholar 

  • Dubinsky, E., Elterman, F., & Gong, C. (1988). The student’s construction of quantification. For the Learning of Mathematics, 8, 44–51.

    Google Scholar 

  • Gray, E.M., & Tall, D.O. (1994). Duality, ambiguity and flexibility: A proceptual view of simple arithmetic. Journal of Research in Mathematics Education, 26(2), 115–141.

    Google Scholar 

  • Gray, E.M., & Tall, D.O. (1991). Duality, ambiguity and flexibility in successful mathematical thinking. Proceedings of PME XIII, Assisi, 2, pp. 72–79.

    Google Scholar 

  • Hiebert, J., & Lefevre, P. (1986). Procedural and conceptual knowledge. In J. Hiebert (Ed.), Conceptual and procedural knowledge: The case of mathematics (pp. 1–27). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • McGowen, M. (1998). Cognitive units, concept images and cognitive collages. Unpublished doctoral dissertation, University of Warwick, Coventry, UK.

    Google Scholar 

  • McGowen, M., & Tall, D.O. (1999). Concept maps and schematic diagrams as devices for documenting the growth of mathematical knowledge. In O. edZaslavsky (.). Proceedings of the 23rd Conference of PME, Haifa, Israel. 3, pp. 281–288.

    Google Scholar 

  • Pinto, M.M., & Tall, D.O. (1999). Student constructions of formal theory: Giving and extracting meaning. O. Zaslavsky (Ed.), Proceedings of the 23rd Conference of PME, Haifa, Israel. 4, pp. 65–73.

    Google Scholar 

  • Pitta, D. (1998). In the mind: Internal representations and elementary arithmetic. Unpublished doctoral dissertation, Mathematics Education Research Centre, University of Warwick, Coventry, UK.

    Google Scholar 

  • Pitta, D., & Gray, E. (1997). In the mind: What can imagery tell us about success and failure in arithmetic?. G.A. Makrides(Ed.), Proceedings of the First Mediterranean Conference on Mathematics, Nicosia, Cyprus, 29–41.

    Google Scholar 

  • Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22, 1–36.

    Article  Google Scholar 

  • Tall, D.O. (1995). Mathematical growth in elementary and advanced mathematical thinking. Proceedings of the Nineteenth International Conference for the Psychology of Mathematics Education, Recife, Brazil, 1, 61–75.

    Google Scholar 

  • Tall, D.O., & Thomas, M.O. (1991). Encouraging versatile thinking in algebra using the computer. Educational Studies in Mathematics, 22, 125–147.

    Article  Google Scholar 

  • Van Hiele, P. (1986). Structure and insight. Orlando, FL: Academic Press.

    Google Scholar 

  • Yusof, Y. (1995). Thinking mathematically: A framework for developing positive attitudes amongst undergraduates. Unpublished doctoral dissertation, University of Warwick, Coventry, UK.

    Google Scholar 

  • Yusof, Y., & Tall, D.O. (1996). Conceptual and procedural approaches to problem solving. Proceedings of PME 20, Valencia, 4, 3–10.

    Google Scholar 

  • Yusof, Y., & Tall, D.O. (1999). Changing attitudes to university mathematics through problem-solving. Educational Studies in Mathematics, 37, 67–82.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tall, D., Gray, E., Ali, M.B. et al. Symbols and the Bifurcation Between Procedural and Conceptual Thinking. Can J Sci Math Techn 1, 81–104 (2001). https://doi.org/10.1080/14926150109556452

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14926150109556452

Navigation