Skip to main content
Log in

Role of cerebellum in learning postural tasks

  • Original Article
  • Scientific Papers
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

For a long time, the cerebellum has been known to be a structure related to posture and equilibrium control. According to the anatomic structure of inputs and internal structure of the cerebellum, its role in learning was theoretically reasoned and experimentally proved. The hypothesis of an inverse internal model based on feedback-error learning mechanism combines feedforward control by the cerebellum and feedback control by the cerebral motor cortex. The cerebellar cortex is suggested to acquire internal models of the body and objects in the external world. During learning of a new tool the motor cortex receives feedback from the realized movement while the cerebellum produces only feedforward command. To realize a desired movement without feedback of the realized movement, the cerebellum needs to form an inverse model of the hand/ arm system. This suggestion was supported by FMRi data. The role of cerebellum in learning new postural tasks mainly concerns reorganization of natural synergies. A learned postural pattern in dogs has been shown to be disturbed after lesions of the cerebral motor cortex or cerebellar nuclei. In humans, learning voluntary control of center of pressure position is greatly disturbed after cerebellar lesions. However, motor cortex and basal ganglia are also involved in the feedback learning postural tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barlow JB. The cerebellum and adaptive control. New York: Cambridge University Press; 2002.

    Google Scholar 

  2. Dichgans J, Diener HC. Different forms of postural ataxia in patients with cerebellar diseases. In: Igarashi M, Black FO, editors. Disorders of posture and gait. Amsterdam: Elsevier; 1986. pp 207–13.

    Google Scholar 

  3. Diener HC, Dichgans J. Pathophysiology of cerebellar ataxia. Mot Disord. 1992;7:95–109.

    Article  CAS  Google Scholar 

  4. Dow RS, Moruzzi G. The physiology and pathology of the cerebellum. Minneapolis: Univ. Minnesota Press, 1958.

    Google Scholar 

  5. Herrick CJ. Neurological foundation of animal behavior. New York: Henry Holt and Co., 1924.

    Google Scholar 

  6. Holmes G. The cerebellum of man. Brain. 1939;62:1–30.

    Article  Google Scholar 

  7. Horak FB, Nashner LM, Diener HC. Postural synergies associated with somatosensory and vestibular loss. Exp Brain Res. 1993;82:167–77.

    Google Scholar 

  8. Luciani L. Il cervelletto. Nuovi studi di fisiologia normale e patologica. Firenze, Le Monnier, 1891.

    Google Scholar 

  9. Babinski J. De l’asynergie cerebelleuse. Rev Neurol. 1899;7:806–16.

    Google Scholar 

  10. Diener HC, Dichgans J, Bacher M, Gompf B. Quantification of postural sway in normals and patients with cerebellar diseases. Electroencephalog Clin Neurophysiol. 1984;57: 134–42.

    Article  CAS  Google Scholar 

  11. Ito M. The cerebellum and neural control. New York: Raven Press; 1984.

    Google Scholar 

  12. Schoch B, Dimitrova A, Gizewski ER, Timmann D. Functional localization in the human cerebellum based on voxelwise statistical analysis: a study of 90 patients. Neuroimage. 2006;30:36–51.

    Article  PubMed  CAS  Google Scholar 

  13. Massion J. Postural control system. Curr Opin Biol. 1994;4:877–87.

    CAS  Google Scholar 

  14. Horak FB, Nashner LM. Central programming of postural movements: adaptation to altered support-surface configuration. J Neurophysiol. 1986;55:1369–81.

    PubMed  CAS  Google Scholar 

  15. Allum JHJ, Honegger F, Schicks H. Vestibular and proprioceptive modulation of postural synergies in normal subjects. J Vestibular Res. 1993;3:59–85.

    CAS  Google Scholar 

  16. Horak FB, Diener HC. Cerebellar control of postural scaling and central set in stance. J Neurophysiol. 1994;72: 479–93.

    PubMed  CAS  Google Scholar 

  17. Shumilina AI. On participation of pyramidal and extrapyramidal systems in motor activity of a deafferented limb. In: Anokhin PK, editor. Problems of higher nervous activity. Moscow: AMN SSSR; 1949. pp 176–85 (in Russian).

    Google Scholar 

  18. Belen’kii VE, Gurfinkel’ VS, Pal’tsev EI. Control elements of voluntary movements. Biofizika. 1967;12:135–41 (in Russian).

    PubMed  CAS  Google Scholar 

  19. Diener HC, Dichgans J, Guschlbauer B, Bacher M, Rapp H, Langenbach P. Associated postural adjustments with body movement in normal subjects and patients with parkinsonism and cerebellar disease. Rev Neurol (Paris). 1990;146:555–63.

    CAS  Google Scholar 

  20. Diedrichsen J, Verstynen T, Lehman SL, Ivry RB. Cerebellar involvement in anticipating the consequences of self-produced actions during bimanual movements. J Neurophysiol. 2005;93:801–12.

    Article  PubMed  Google Scholar 

  21. Brindley GS. The use made by the cerebellum of the information that it receives from sense organs. Int Brain Res Org Bull. 1964;3:80.

    Google Scholar 

  22. Marr D. A theory of cerebellar cortex. J Physiol. 1969;202:437–70.

    PubMed  CAS  Google Scholar 

  23. Albus JS. A theory of cerebellar function. Math Biosci. 1971;10:25–61.

    Article  Google Scholar 

  24. Thach WT. On the specific role of the cerebellum in motor learning and cognition: clues from PET activation and lesion studies in man. Behav Brain Sci. 1996;19:411–31.

    Google Scholar 

  25. Campbell NC, Ekerot CF, Hesslow G, Oscarsson O. Dendritic plateau potentials evoked in Purkinje cells by parallel fiber volleys in the cat. J Physiol. 1983;340:209–23.

    PubMed  CAS  Google Scholar 

  26. Sasaki K, Gemba H. Learning of fast and stable hand movement and cerebro-cerbellar interactions in the monkey. Brain Res. 1983;277:41–6.

    Article  PubMed  CAS  Google Scholar 

  27. Houk JC, Buckingham JT, Barto AG. Models of the cerebellum and motor learning. Behav Brain Sci. 1996;19:368–83.

    Google Scholar 

  28. Ito M. Mechanisms of motor learning in the cerebellum. Brain Res. 2000;886:237–45.

    Article  PubMed  CAS  Google Scholar 

  29. Ito M. Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev. 2001;81:1143–95.

    PubMed  CAS  Google Scholar 

  30. Llinas R, Welsh JP. On the cerebellum and motor learning. Curr Opin Neurobiol. 1993;3:958–65.

    Article  PubMed  CAS  Google Scholar 

  31. Thach WT, Goodkin HP, Keating JG. The cerebellum and the adaptive coordination of movement. Ann Rev Neurosci. 1992;15:403–42.

    Article  PubMed  CAS  Google Scholar 

  32. Miles FA, Lisberger SG. Plasticity in the vestibulo-ocular reflex: a new hypothesis. Ann Rev Neurosci. 1981;4:273–99.

    Article  PubMed  CAS  Google Scholar 

  33. Boyden ES, Katoh A, Raymond JL. Cerebellum-dependent learning: the role of multiple plasticity mechanisms. Ann Rev Neurosci. 2004;27:581–609.

    Article  PubMed  CAS  Google Scholar 

  34. Gomi H, Kawato M. Equilibrium-point control hypothesis examined by measured arm stiffness during multijoint movement. Science. 1996;272:117–20.

    Article  PubMed  CAS  Google Scholar 

  35. Imamizu H, Miyauchi S, Tamada T, Sasaki Y, Takino R, Putz B, et al. Human cerebellar activity reflecting an acquired internal model of a new tool. Nature. 2000;403: 192–95.

    Article  PubMed  CAS  Google Scholar 

  36. Kawato M, Wolpert D. Internal models for motor control. Novartis Found Symp. 1998;218:291–304.

    Article  PubMed  CAS  Google Scholar 

  37. Schweighofer N, Doya K, Kuroda S. Cerebellar aminergic neuromodulation: towards a functional understanding. Brain Res Brain Res Rev. 2004;44:103–16.

    Article  PubMed  Google Scholar 

  38. Mauk MD. Roles of cerebellar cortex and nuclei in motor learning: contradictions or cues? Neuron. 1997;18:343–46.

    Article  PubMed  CAS  Google Scholar 

  39. Lang CE, Bastian AJ. Cerebellar damage impairs automaticity of a recently practiced movement. J Neurophysiol. 2002;87:1336–47.

    PubMed  Google Scholar 

  40. Balezina NP, Varga ME, Vasilyeva ON, Ivanova NG, Ioffe ME, Pavlova OG, et al. A study of mechanisms of reorganization of motor coordination in learning. In: Airapetyants MG, editor. Brain and behavior. Moscow: Nauka; 1990. pp 105–19 (in Russian).

    Google Scholar 

  41. Balezina NP, Pavlova OG, Ioffe ME. The postural effects of the cerebellar nuclei stimulation in the dogs. In: Fanardjian VV, editor. Cerebellum and brainstem structures. Yerevan: Armenian Acad. Press; 1995. pp 179–83 (in Russian).

    Google Scholar 

  42. Timmann D, Horak FB. Perturbed step initiation in cerebellar subjects: 2. Modification of anticipatory postural adjustments. Exp Brain Res. 2001;141:110–20.

    Article  PubMed  CAS  Google Scholar 

  43. Frings M, Awad N, Jentzen W, Dimitrova A, Kolb FP, Diener HC, et al. Involvement of the human cerebellum in short-term and long-term habituation of the acoustic startleresponse: a serial PET study. Clin Neurophysiol. 2006; 117:1290–300.

    Article  PubMed  Google Scholar 

  44. Maschke M, Drepper J, Kindsvater K, Kolb FP, Diener HC, Timmann D. Involvement of the human medial cerebellum in long-term habituation of the acoustic startle-response. Exp Brain Res. 2000;133:359–67.

    Article  PubMed  CAS  Google Scholar 

  45. Schwabe A, Drepper J, Maschke M, Diener HC, Timmann D. The role of human cerebellum in schortand long-term habituation of postural response. Gait Posture. 2004; 19:16–23.

    Article  PubMed  Google Scholar 

  46. Kolb FP, Lachauer S, Maschke M, Timmann D. Classically conditioned postural reflex in cerebellar patients. Exp Brain Res. 2004;158:163–79.

    Article  PubMed  CAS  Google Scholar 

  47. Ioffe M, Ivanova N, Frolov AA, Biryukova E, Kiselyova N. On the role of motor cortex in the learned rearrangement of postural coordinations. In: Gurfinkel VS, Ioffe ME, Massion J, Roll, JP, editors. Stance and motion: facts and concepts. New York, London: Plenum Press; 1988. pp 213–26.

    Google Scholar 

  48. Ioffe M. The motor cortex inhibits synergies interfering with a learned movement: reorganization of postural coordination in dogs. In: Miller R, Ivanitsky AM, Balaban PM, editors. Complex brain function: conceptual advances in Russian neurosciences. Amsterdam: Harwood Academic Publishers; 2000. pp 289–300.

    Google Scholar 

  49. Ioffe ME, Vasilyeva ON, Balezina NP, Mats VN, Alexandrov AV. On the role of n.interpositus in the motor learning after dentate lesions in dogs. In: Stuart D, editor. Motor control-VII. Tucson, AZ: Motor Control Press; 1996. pp 181–83.

    Google Scholar 

  50. Gahery Y, Ioffe ME, Massion J, Polit A. The postural support of movement in cat and dog. Acta Neurobiol Exp. 1980;40:741–55.

    CAS  Google Scholar 

  51. Ioffe ME. Pyramidal influences in establishment of new motor coordinations in dogs. Physiol Behav. 1973;11:145–53.

    Article  PubMed  CAS  Google Scholar 

  52. Tsukahara N. Cellular basis of classical conditioning mediated by the red nucleus in the cat. In: Alkon DL, Woody CD, editors. Neural mechanisms of conditioning. New York: Plenum Press; 1986. pp 129–39.

    Google Scholar 

  53. Doya K. What are the computations of the cerebellum, of the basal ganglia, and cerebral cortex. J Neural Networks. 1999;12:961–74.

    Article  Google Scholar 

  54. Doya K. Complementary roles of basal ganglia and cerebellum in learning and motor control. Curr Opin Neurobiol. 2000;10:732–39.

    Article  PubMed  CAS  Google Scholar 

  55. Ioffe ME, Ustinova KI, Chernikova LA, Kulikov MA. Supervised learning of postural tasks in patients with poststroke hemiparesis, Parkinson’s disease or cerebellar ataxia. Exp Brain Res. 2006;168:384–94.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Ioffe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ioffe, M.E., Chernikova, L.A. & Ustinova, K.I. Role of cerebellum in learning postural tasks. Cerebellum 6, 87–94 (2007). https://doi.org/10.1080/14734220701216440

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220701216440

Key words

Navigation