Skip to main content

Cerebellar involvement in executive control

Abstract

The cerebellum has long been considered to be mainly involved in motor function. In the last 20 years, evidence from neuroimaging studies and from investigations of patients with cerebellar lesions has shown that the cerebellum plays a role in a range of cognitive functions. While cerebellar contributions have been shown for learning and memory, the cerebellum has also been linked to higher order cognitive control processes frequently referred to as executive functions. Although it is widely accepted that the cerebellum contributes to cognitive processing, the nature of cerebellar involvement is not well understood. The present paper focuses on the role of the cerebellum in executive processing, reviewing findings derived from neuroimaging studies or from studies investigating deficits related to cerebellar dysfunction. As executive functions cannot be considered as a unitary concept, special emphasis is put on cerebellar contributions to different aspects of executive control such as working memory, multitasking or inhibition. Referring to models derived from motor control, possible mechanisms of cerebellar involvement in executive processing are discussed. Finally, methodological problems in assessing executive deficits in general and in assessing the cerebellar contribution to executive processing in particular are addressed.

This is a preview of subscription content, access via your institution.

References

  1. Glickstein M. Motor skills but not cognitive tasks. Trends Neurosci. 1993;16:450-l.

    PubMed  Article  CAS  Google Scholar 

  2. Glickstein M. The cerebellum and motor learning. Curr Opin Neurobiol. 1992;2:802–06.

    PubMed  Article  CAS  Google Scholar 

  3. Schmahmann JD. Rediscovery of an early concept. Int Rev Neurobiol. 1997;41:3–27.

    PubMed  CAS  Article  Google Scholar 

  4. Daum I, Snitz BE, Ackermann H. Neuropsychological deficits in cerebellar syndromes. Int Rev Psychiatry. 2001;13: 268–75.

    Google Scholar 

  5. Daum I, Schugens MM, Ackermann H, Lutzenberger W, Dichgans J, Birbaumer N. Classical conditioning after cerebellar lesions in humans. Behav Neurosci. 1993;107: 748–56.

    PubMed  Article  CAS  Google Scholar 

  6. Drepper J, Timmann D, Kolb FP, Diener HC. Non-motor associative learning in patients with isolated degenerative cerebellar disease. Brain. 1999;122(Pt l):87–97.

    PubMed  Article  Google Scholar 

  7. Jokisch D, Troje NF, Koch B, Schwarz M, Daum I. Differential involvement of the cerebellum in biological and coherent motion perception. Eur J Neurosci. 2005;21:3439–46.

    PubMed  Article  Google Scholar 

  8. Gottwald B, Wilde B, Mihajlovic Z, Mehdorn HM. Evidence for distinct cognitive deficits after focal cerebellar lesions. J Neurol Neurosurg Psychiatry. 2004;75:1524–31.

    PubMed  Article  CAS  Google Scholar 

  9. Golla H, Thier P, Haarmeier T. Disturbed overt but normal covert shifts of attention in adult cerebellar patients. Brain. 2005;128:1525–35.

    PubMed  Article  Google Scholar 

  10. Grafman J, Litvan I, Massaquoi S, Stewart M, Sirigu A, Hallett M. Cognitive planning deficit in patients with cerebellar atrophy. Neurology. 1992;42:1493–6.

    PubMed  CAS  Google Scholar 

  11. Heyder K, Suchan B, Daum I. Cortico-subcortical contributions to executive control. Acta Psychol (Amst). 2004;115: 271–89.

    Article  Google Scholar 

  12. Mayes AR, Daum I. How specific are the memory and other cognitive deficits caused by frontal lobe lesions? In: Rabbit P, editor. Methodology in frontal and executive functions. Hove, UK: Psychology Press; 1997. pp 155–75.

    Google Scholar 

  13. Baddeley A, Delia SS, Papagno C, Spinnler H. Dual-task performance in dysexecutive and nondysexecutive patients with a frontal lesion. Neuropsychology. 1997;11:187–94.

    PubMed  Article  CAS  Google Scholar 

  14. Baddeley AD. Working memory. Oxford, UK: Clarendon Press; 1986.

    Google Scholar 

  15. Baddeley AD, Hitch G. In: Bower GA, editor. The psycho logy of learning and motivation. New York: Academic; 1974. pp 47–89.

    Google Scholar 

  16. Parkin AJ. The central executive does not exist. J Int Neuropsychol Soc. 1998;4:518–22.

    PubMed  Article  CAS  Google Scholar 

  17. Logan G. Executive control of thought. Acta Psychologica. 1985;60:193–210.

    Article  Google Scholar 

  18. Norman DA, Shallice T. Attention to action: Willed and automatic control of behavior. In: Davidson RJ, Schwartz GE, Shapiro D, editors. Consciousness and self regulation (Vol. 4). New York: Plenum; 1986. pp 1–18.

    Google Scholar 

  19. Smith EE, Jonides J. Storage and executive processes in the frontal lobes. Science. 1999;283:1657–61.

    PubMed  Article  CAS  Google Scholar 

  20. Daum I, Ackermann H. Neuropsychological abnormalities in cerebellar syndromes-fact or fiction? Int Rev Neurobiol. 1997;41:455–71.

    PubMed  CAS  Google Scholar 

  21. Ramnani N. The primate cortico-cerebellar system: Anatomy and function. Nat Rev Neurosci. 2006;7:511–22.

    PubMed  Article  CAS  Google Scholar 

  22. Schmahmann JD, Pandya DN. The cerebrocerebellar system. Int Rev Neurobiol. 1997;41:31–60.

    PubMed  CAS  Google Scholar 

  23. Middleton FA, Strick PL. Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science. 1994;266:458–61.

    PubMed  Article  CAS  Google Scholar 

  24. Schmahmann JD, Pandya DN. Anatomic organization of the basilar pontine projections from prefrontal cortices in rhesus monkey. J Neurosci. 1997;17:438–58.

    PubMed  CAS  Google Scholar 

  25. Schmahmann JD, Rosene DL, Pandya DN. Motor projections to the basis pontis in rhesus monkey. J Comp Neurol. 2004;478:248–68.

    PubMed  Article  Google Scholar 

  26. Brodai P. Principles of organization of the monkey corticopontine projection. Brain Res. 1978;148:214–8.

    Article  Google Scholar 

  27. Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci. 2003;23:8432–44.

    PubMed  CAS  Google Scholar 

  28. Ramnani N, Behrens TE, Johansen-Berg H, Richter MC, Pinsk MA, Andersson JL, Rudebeck P, Ciccarelli O, Richter W, Thompson AJ, Gross CG, Robson MD, Kastner S, Matthews PM. The evolution of prefrontal inputs to the cortico-pontine system: Diffusion imaging evidence from Macaque monkeys and humans. Cereb Cortex. 2006;16:811–8.

    PubMed  Article  Google Scholar 

  29. Matano S. Brief communication: Proportions of the ventral half of the cerebellar dentate nucleus in humans and great apes. Am J Phys Anthropol. 2001;114:163–5.

    PubMed  Article  CAS  Google Scholar 

  30. Luriia AR. The working brain: An introduction to neuropsychology. London: Allen Lane; 1973.

    Google Scholar 

  31. Goldman-Rakic PS. Architecture of the prefrontal cortex and the central executive. Ann NY Acad Sci. 1995;769:71–83.

    PubMed  Article  CAS  Google Scholar 

  32. Royall DR, Lauterbach EC, Cummings JL, Reeve A, Rummans TA, Kaufer DI, LaFrance WC Jr, Coffey CE. Executive control function: A review of its promise and challenges for clinical research. A report from the Committee on Research of the American Neuropsychiatric Association. J Neuropsychiatry Clin Neurosci. 2002;14:377–405.

    PubMed  Google Scholar 

  33. Vendrell P, Junque C, Pujol J, Jurado MA, Molet J, Grafman J. The role of prefrontal regions in the Stroop task. Neuropsychologia. 1995;33:341–352.

    PubMed  Article  CAS  Google Scholar 

  34. Burgess PW, Shallice T. Response suppression, initiation and strategy use following frontal lobe lesions. Neuropsychologia. 1996;34:263–72.

    PubMed  Article  CAS  Google Scholar 

  35. Aron AR, Fletcher PC, Bullmore ET, Sahakian BJ, Robbins TW. Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nat Neurosci. 2003;6:115–6.

    PubMed  Article  CAS  Google Scholar 

  36. Rubia K, Smith AB, Brammer MJ, Taylor E. Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection. Neuroimage. 2003;20:351–8.

    PubMed  Article  Google Scholar 

  37. Godefroy O, Cabaret M, Petit-Chenal V, Pruvo JP, Rousseaux M. Control functions of the frontal lobes. Modularity of the central-supervisory system? Cortex. 1999;35:l-20.

    Article  Google Scholar 

  38. Levine B, Stuss DT, Milberg WP, Alexander MP, Schwartz M, Macdonald R. The effects of focal and diffuse brain damage on strategy application: evidence from focal lesions, traumatic brain injury and normal aging. J Int Neuropsychol Soc. 1998;4:247–64.

    PubMed  CAS  Google Scholar 

  39. D’Esposito M, Detre JA, Alsop DC, Shin RK, Atlas S, Grossman M. The neural basis of the central executive system of working memory. Nature. 1995;378:279–81.

    PubMed  Article  CAS  Google Scholar 

  40. Burgess PW. Strategy application disorder: The role of the frontal lobes in human multitasking. Psychol Res. 2000;63: 279–88.

    PubMed  Article  CAS  Google Scholar 

  41. Owen AM, Roberts AC, Hodges JR, Summers BA, Polkey CE, Robbins TW. Contrasting mechanisms of impaired attentional set-shifting in patients with frontal lobe damage or Parkinson’s disease. Brain. 1993;116(Pt 5): 1159–75.

    PubMed  Article  Google Scholar 

  42. Konishi S, Nakajima K, Uchida I, Kikyo H, Kameyama M, Miyashita Y. Common inhibitory mechanism in human inferior prefrontal cortex revealed by event-related functional MRI. Brain. 1999;122(Pt 5):981–91.

    PubMed  Article  Google Scholar 

  43. Konishi S, Nakajima K, Uchida I, Kameyama M, Nakahara K, Sekihara K, Miyashita Y. Transient activation of inferior prefrontal cortex during cognitive set shifting. Nat Neurosci. 1998;l:80–4.

    Article  Google Scholar 

  44. Owen AM, Morris RG, Sahakian BJ, Polkey CE, Robbins TW. Double dissociations of memory and executive functions in working memory tasks following frontal lobe excisions, temporal lobe excisions or amygdalo-hippocampectomy in man. Brain. 1996;119(Pt 5):1597–615.

    PubMed  Article  Google Scholar 

  45. Owen AM, Sahakian BJ, Semple J, Polkey CE, Robbins TW. Visuo-spatial short-term recognition memory and learning after temporal lobe excisions, frontal lobe excisions or amygdalo-hippocampectomy in man. Neuropsychologia. 1995;33:l-24.

    Article  Google Scholar 

  46. Barcelo F, Suwazono S, Knight RT. Prefrontal modulation of visual processing in humans. Nat Neurosci. 2000;3:399–403.

    PubMed  Article  CAS  Google Scholar 

  47. Muller NG, Machado L, Knight RT. Contributions of subregions of the prefrontal cortex to working memory: Evidence from brain lesions in humans. J Cogn Neurosci. 2002;14:673–86.

    PubMed  Article  Google Scholar 

  48. Cohen JD, Perlstein WM, Braver TS, Nystrom LE, Noll DC, Jonides J, Smith EE. Temporal dynamics of brain activation during a working memory task. Nature. 1997;386:604–08.

    PubMed  Article  CAS  Google Scholar 

  49. Courtney SM, Ungerleider LG, Keil K, Haxby JV. Object and spatial visual working memory activate separate neural systems in human cortex. Cereb Cortex. 1996;6:39–49.

    PubMed  Article  CAS  Google Scholar 

  50. Apps R, Garwicz M. Anatomical and physiological foundations of cerebellar information processing. Nat Rev Neurosci. 2005;6:297–311.

    PubMed  Article  CAS  Google Scholar 

  51. Ito M. Movement and thought: identical control mechanisms by the cerebellum. Trends Neurosci. 1993;16:448–50.

    PubMed  Article  CAS  Google Scholar 

  52. Bloedel JR. Functional heterogeneity with structural homogeneity: How does the cerebellum operate? Behav Brain Sci. 1992;15:666–78.

    Google Scholar 

  53. Blakemore SJ, Sirigu A. Action prediction in the cerebellum and in the parietal lobe. Exp Brain Res. 2003;153:239–45.

    PubMed  Article  Google Scholar 

  54. Wolpert DM, Ghahramani Z. Computational principles of movement neuroscience. Nat Neurosci. 2000;3Suppl: 1212–7.

    Google Scholar 

  55. Ito M. Bases and implications of learning in the cerebellumadaptive control and internal model mechanism. Prog Brain Res. 2005;148:95–109.

    PubMed  Google Scholar 

  56. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(Pt 4):561–79.

    PubMed  Article  Google Scholar 

  57. Schmahmann JD. Disorders of the cerebellum: Ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004;16: 367–78.

    PubMed  Google Scholar 

  58. Neau JP, Arroyo-Anllo E, Bonnaud V, Ingrand P, Gil R. Neuropsychological disturbances in cerebellar infarcts. Acta Neurol Scand. 2000;102:363–70.

    PubMed  Article  CAS  Google Scholar 

  59. Tu PC, Yang TH, Kuo WJ, Hsieh JC, Su TP. Neural correlates of antisaccade deficits in schizophrenia, an fMRI study. J Psychiatr Res. 2006;40:606–12.

    PubMed  Article  CAS  Google Scholar 

  60. Watanabe J, Sugiura M, Sato K, Sato Y, Maeda Y, Matsue Y, Fukuda H, Kawashima R. The human prefrontal and parietal association cortices are involved in NO-GO performances: An event-related fMRI study. Neuroimage. 2002;17:1207–16.

    PubMed  Article  Google Scholar 

  61. Berman KF, Ostrem JL, Randolph C, Gold J, Goldberg TE, Coppola R, Carson RE, Herscovitch P, Weinberger DR. Physiological activation of a cortical network during performance of the Wisconsin Card Sorting Test: A positron emission tomography study. Neuropsychologia. 1995;33: 1027–46.

    PubMed  Article  CAS  Google Scholar 

  62. Lie CH, Specht K, Marshall JC, Fink GR. Using fMRI to decompose the neural processes underlying the Wisconsin Card Sorting Test. Neuroimage. 2006;30:1038–49.

    PubMed  Article  Google Scholar 

  63. Ravizza SM, Ivry RB. Comparison of the basal ganglia and cerebellum in shifting attention. J Cogn Neurosci. 2001;13: 285–97.

    PubMed  Article  CAS  Google Scholar 

  64. Daum I, Ackermann H, Schugens MM, Reimold C, Dichgans J, Birbaumer N. The cerebellum and cognitive functions in humans. Behav Neurosci. 1993;107:411–9.

    PubMed  Article  CAS  Google Scholar 

  65. Fiez JA, Petersen SE, Cheney MK, Raichle ME. Impaired non-motor learning and error detection associated with cerebellar damage. A single case study. Brain. 1992;115(Pt l):155–78.

    PubMed  Article  Google Scholar 

  66. Greve KW, Brooks J, Crouch JA, Williams MC, Rice WJ. Factorial structure of the Wisconsin Card Sorting Test. Br J Clin Psychol. 1997;36(Pt 2):283–5.

    PubMed  Google Scholar 

  67. Lang CE, Bastian AJ. Cerebellar damage impairs automaticity of a recently practiced movement. J Neurophysiol. 2002;87:1336–47.

    PubMed  Google Scholar 

  68. Collette F, Olivier L, Van der LM, Laureys S, Delfiore G, Luxen A, Salmon E. Involvement of both prefrontal and inferior parietal cortex in dual-task performance. Brain Res Cogn Brain Res. 2005;24:237–51.

    PubMed  Article  Google Scholar 

  69. Chen SH, Desmond JE. Cerebrocerebellar networks during articulatory rehearsal and verbal working memory tasks. Neuroimage. 2005;24:332–8.

    PubMed  Article  Google Scholar 

  70. Kirschen MP, Chen SH, Schraedley-Desmond P, Desmond JE. Load- and practice-dependent increases in cerebro-cerebellar activation in verbal working memory: An fMRI study. Neuroimage. 2005;24:462–72.

    PubMed  Article  Google Scholar 

  71. Schumacher EH, Lauber E, Awh E, Jonides J, Smith EE, Koeppe RA. PET evidence for an amodal verbal working memory system. Neuroimage. 1996;3:79–88.

    PubMed  Article  CAS  Google Scholar 

  72. Jonides J, Smith EE, Koeppe RA, Awh E, Minoshima S, Mintun MA. Spatial working memory in humans as revealed by PET. Nature. 1993;363:623–5.

    PubMed  Article  CAS  Google Scholar 

  73. Justus T, Ravizza SM, Fiez JA, Ivry RB. Reduced phonological similarity effects in patients with damage to the cerebellum. Brain Lang. 2005;95:304–18.

    PubMed  Article  Google Scholar 

  74. Ravizza SM, McCormick CA, Schlerf JE, Justus T, Ivry RB, Fiez JA. Cerebellar damage produces selective deficits in verbal working memory. Brain. 2006;129:306–20.

    PubMed  Article  Google Scholar 

  75. Bürk K, Globas C, Bosch S, Klockgether T, Zuhlke C, Daum I, Dichgans J. Cognitive deficits in spinocerebellar ataxia type 1, 2, and 3. J Neurol. 2003;250:207–11.

    PubMed  Article  Google Scholar 

  76. Silveri MC, Di Betta AM, Filippini V, Leggio MG, Molinari M. Verbal short-term store-rehearsal system and the cerebellum. Evidence from a patient with a right cerebellar lesion. Brain. 1998;121(Pt 11):2175–87.

    PubMed  Article  Google Scholar 

  77. Desmond JE, Chen SH, Shieh PB. Cerebellar transcranial magnetic stimulation impairs verbal working memory. Ann Neurol. 2005;58:553–60.

    PubMed  Article  Google Scholar 

  78. Hubrich-Ungureanu P, Kaemmerer N, Henn FA, Braus DF. Lateralized organization of the cerebellum in a silent verbal fluency task: A functional magnetic resonance imaging study in healthy volunteers. Neurosci Lett. 2002;319:91–4.

    PubMed  Article  CAS  Google Scholar 

  79. Schlosser R, Hutchinson M, Joseffer S, Rusinek H, Saarimaki A, Stevenson J, Dewey SL, Brodie JD. Functional magnetic resonance imaging of human brain activity in a verbal fluency task. J Neurol Neurosurg Psychiatry. 1998;64:492–8.

    PubMed  CAS  Google Scholar 

  80. Appollonio IM, Grafman J, Schwartz V, Massaquoi S, Hallett M. Memory in patients with cerebellar degeneration. Neurology. 1993;43:1536–44.

    PubMed  CAS  Google Scholar 

  81. Bürk K, Globas C, Bosch S, Graber S, Abele M, Brice A, Dichgans J, Daum I, Klockgether T. Cognitive deficits in spinocerebellar ataxia 2. Brain. 1999;122(Pt 4):769–77.

    PubMed  Article  Google Scholar 

  82. Leggio MG, Silveri MC, Petrosini L, Molinari M. Phonological grouping is specifically affected in cerebellar patients: A verbal fluency study. J Neurol Neurosurg Psychiatry. 2000;69:102–06.

    PubMed  Article  CAS  Google Scholar 

  83. Desmond JE, Gabrieli JD, Wagner AD, Ginier BL, Glover GH. Lobular patterns of cerebellar activation in verbal working-memory and finger-tapping tasks as revealed by functional MRI. J Neurosci. 1997;17:9675–85.

    PubMed  CAS  Google Scholar 

  84. Jones DM, Macken WJ, Nicholls AP. The phonological store of working memory: Is it phonological and is it a store? J Exp Psychol Learn Mem Cogn. 2004;30:656–74.

    PubMed  Article  Google Scholar 

  85. Burgess PW, Alderman N, Forbes C, Costello A, Coates LM, Dawson DR, Anderson ND, Gilbert SJ, Dumontheil I, Channon S. The case for the development and use of “ecologically valid” measures of executive function in experimental and clinical neuropsychology. J Int Neuropsychol Soc. 2006;12:194–209.

    PubMed  Article  Google Scholar 

  86. Kvavilashvili L, Ellis J. Ecological validity and the real-life/ laboratory controversy in memory research: A critical and historical review. History Philosophy Psychol. 2004;6:59–80.

    Google Scholar 

  87. Milner B. Effects of different brain regions on card sorting. Arch Neurol (Chicago). 2006;9:90–100.

    Google Scholar 

  88. Barash S, Melikyan A, Sivakov A, Zhang M, Glickstein M, Thier P. Saccadic dysmetria and adaptation after lesions of the cerebellar cortex. J Neurosci. 1999;19:10931–9.

    PubMed  CAS  Google Scholar 

  89. Büttner U, Fuhry L. Eye movements. Curr Opin Neurol. 1995;8:77–82.

    PubMed  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Bellebaum.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bellebaum, C., Daum, I. Cerebellar involvement in executive control. Cerebellum 6, 184–192 (2007). https://doi.org/10.1080/14734220601169707

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220601169707

Key words

  • Cerebello-thalamo-cortical
  • cerebellar
  • cognitive
  • loop