Skip to main content
Log in

Transcriptional malfunctioning of heat shock protein gene expression in spinocerebellar ataxias

  • Invited Review
  • Scientific Papers
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Among the various dominantly-inherited spinocerebellar ataxias (SCAs), at least seven of them belong to the polyglutamine disease group and are caused by glutamine-coding CAG triplet repeat expansion. The expanded coding CAG repeat translates into a polyglutamine stretch in the disease protein, which leads to late-onset and progressive neurodegeneration. Expanded polyglutamine adopts a misfolded protein conformation, and is itself a cellular Stressor which induces robust heat shock response (HSR). Under polyglutamine stress, heat shock proteins (Hsps) are produced in neurons to assist refolding and/or promote the degradation of misfolded proteins. Along with the progressive nature of polyglutamine degeneration, a gradual decline of HSR in degenerating neurons was observed. Such kind of reduction can be observed in a large familyof hsp gene expression, includinghsp22, 26, 27, and70. This underscores an intimate relationship between the inducibility ofhsp gene expression and the disease progression. In this review, we describe the current understandings ofhsp gene dysregulation in polyglutamine disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DRPLA:

Dentatorubropallidoluysian Atrophy

HD:

Huntington’s disease

Hdj:

Human Dna J

Hsc:

Heat shock cognate

HSE:

Heat Shock Element

HSF:

Heat Shock Transcription Factor

Hsps:

heat shock proteins

MJD:

Machado-Joseph Disease

SCA:

Spinocerebellar Ataxia

TBP:

TATA-box binding protein

UPS:

ubiquitin-proteasome system

References

  1. Zoghbi HY. Spinocerebellar ataxias. Neurobiol Dis. 2000; 7:523–7.

    Article  PubMed  CAS  Google Scholar 

  2. Gatchel JR, Zoghbi HY. Diseases of unstable repeat expansion: mechanisms and common principles. Nat Rev Genet. 2005;6:743–55.

    Article  PubMed  CAS  Google Scholar 

  3. van de Warrenburg BP, Sinke RJ, Kremer B. Recent advances in hereditary spinocerebellar ataxias. J Neuropathol Exp Neurol. 2005;64:171–80.

    PubMed  Google Scholar 

  4. Manto MU. The wide spectrum of spinocerebellar ataxias (SCAs). Cerebellum. 2005;4:2–6.

    Article  PubMed  CAS  Google Scholar 

  5. Duenas AM, Goold R, Giunti P. Molecular pathogenesis of spinocerebellar ataxias. Brain. 2006;129:1357–70.

    Article  PubMed  Google Scholar 

  6. Zoghbi HY, Orr HT. Glutamine repeats and neurodegeneration. Annu Rev Neurosci. 2000;23:217–47.

    Article  PubMed  CAS  Google Scholar 

  7. Ross CR, Poirier MA. Protein aggregation and neurodegenerative disease. Nat Med. 2004;10(Suppl.): S10–17.

    Article  PubMed  CAS  Google Scholar 

  8. Tanaka M, Machida Y, Nukina N. A novel therapeutic strategy for polyglutamine diseases by stabilizing aggregationprone proteins with small molecules. J Mol Med. 2005; 83:343–52.

    Article  PubMed  CAS  Google Scholar 

  9. Michalik A, Van Broeckhoven C. Pathogenesis of polyglutamine disorders: aggregation revisited. Hum Mol Genet. 2003;12Spec no. 2: R173–86.

    Article  PubMed  CAS  Google Scholar 

  10. Young JC, Agashe VR, Siegers K, Hartl FU. Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol. 2004;5:781–91.

    Article  PubMed  CAS  Google Scholar 

  11. Bukau B, Weissman J, Horwich A. Molecular chaperones and protein quality control. Cell. 2006;125:443–51.

    Article  PubMed  CAS  Google Scholar 

  12. Hartl FU. Molecular chaperones in cellular protein folding. Nature. 1996;381:571–9.

    Article  PubMed  CAS  Google Scholar 

  13. Jolly C, Morimoto RI. Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J Natl Cancer Inst. 2000;92:1564–72.

    Article  PubMed  CAS  Google Scholar 

  14. Bromberg Z, Deutschman CS, Weiss YG. Heat shock protein 70 and the acute respiratory distress syndrome. J Anesth. 2005;19:236–42.

    Article  PubMed  Google Scholar 

  15. Chaudhuri TK, Paul S. Protein-misfolding diseases and chaperone-based therapeutic approaches. FEBS J. 2006;273: 1331–49.

    Article  PubMed  CAS  Google Scholar 

  16. Sakahira H, Breuer P, Hayer-Hartl MK, Hartl FU. Molecular chaperones as modulators of polyglutamine protein aggregation and toxicity. Proc Natl Acad Sci USA. 2002;99(Suppl. 4): 16412–18.

    Article  PubMed  CAS  Google Scholar 

  17. Bonini NM. Chaperoning brain degeneration. Proc Natl Acad Sci USA. 2002;99(Suppl. 4): 16407–11.

    Article  PubMed  CAS  Google Scholar 

  18. Muchowski PJ, Wacker JL. Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci. 2005;6:11–22.

    Article  PubMed  CAS  Google Scholar 

  19. Chan HY, Warrick JM, Gray-Board GL, Paulson HL, Bonini NM. Mechanisms of chaperone suppression of polyglutamine disease: selectivity, synergy and modulation of protein solubility in Drosophila. Hum Mol Genet. 2000; 9:2811–20.

    Article  PubMed  CAS  Google Scholar 

  20. Chai Y, Koppenhafer SL, Bonini NM, Paulson HL. Analysis of the role of heat shock protein (Hsp) molecular chaperones in polyglutamine disease. J Neurosci. 1999;19:10338–10347.

    PubMed  CAS  Google Scholar 

  21. Cummings CJ, Mancini MA, Antalffy B, DeFranco DB, Orr HT, Zoghbi HY. Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat Genet. 1998;19:148–54.

    Article  PubMed  CAS  Google Scholar 

  22. Al-Ramahi I, Lam YC, Chen HK, de Gouyon B, Zhang M, Perez AM, Branco J, de Haro M, Patterson C, Zoghbi HY, Botas J. CHIP protects from the neurotoxicity of expanded and wild-type ataxin-1 and promotes their ubiquitination and degradation. J Biol Chem. 2006;281:26714–24.

    Article  PubMed  CAS  Google Scholar 

  23. Jana NR, Dikshit P, Goswami A, Kotliarova S, Murata S, Tanaka K, Nukina N. Co-chaperone CHIP associates with expanded polyglutamine protein and promotes their degradation by proteasomes. J Biol Chem. 2005;280:l1635–40.

    Article  CAS  Google Scholar 

  24. Kimura Y, Kakizuka A. Polyglutamine diseases and molecular chaperones. IUBMB Life. 2003;55:337–45.

    Article  PubMed  CAS  Google Scholar 

  25. Meriin AB, Sherman MY. Role of molecular chaperones in neurodegenerative disorders. Int J Hyperthermia. 2005;21: 403–19.

    Article  PubMed  CAS  Google Scholar 

  26. Wyttenbach A. Role of heat shock proteins during polyglutamine neurodegeneration: mechanisms and hypothesis. J Mol Neurosci. 2004;23:69–96.

    Article  PubMed  CAS  Google Scholar 

  27. Huen NY, Chan HY. Dynamic regulation of molecular chaperone gene expression in polyglutamine disease. Biochem Biophys Res Commun. 2005;334:1074–84.

    Article  PubMed  CAS  Google Scholar 

  28. Hay DG, Sathasivam K, Tobaben S, Stahl B, Marber M, Mestril R, Mahal A, Smith DJ, Woodman B, Bates GP. Progressive decrease in chaperone protein levels in a mouse model of Huntington’s disease and induction of stress proteins as a therapeutic approach. Hum Mol Genet. 2004;13: 1389–405.

    Article  PubMed  CAS  Google Scholar 

  29. Novoselova TV, Margulis BA, Novoselov SS, Sapozhnikov AM, van der Spuy J, Cheetham ME, Guzhova IV. Treatment with extracellular HSP70/HSC70 protein can reduce polyglutamine toxicity and aggregation. J Neurochem. 2005;94:597–606.

    Article  PubMed  CAS  Google Scholar 

  30. Muchowski PJ, Schaffar G, Sittler A, Wanker EE, Hayer-Hartl MK, Hartl FU. Hsp70 and hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloidlike fibrils. Proc Natl Acad Sci USA. 2000;97:7841–6.

    Article  PubMed  CAS  Google Scholar 

  31. Kim S, Nollen EA, Kitagawa K, Bindokas VP, Morimoto RI. Polyglutamine protein aggregates are dynamic. Nat Cell Biol. 2002;4:826–31.

    Article  PubMed  CAS  Google Scholar 

  32. Helmlinger D, Yvert G, Picaud S, Merienne K, Sahel J, Mandel JL, Devys D. Progressive retinal degeneration and dysfunction in R6 Huntington’s disease mice. Hum Mol Genet. 2002;ll:3351–9.

    Article  Google Scholar 

  33. Nalepa G, Rolfe M, Harper JW. Drug discovery in the ubiquitin-proteasome system. Nat Rev Drug Discov. 2006;5:596–613.

    Article  PubMed  CAS  Google Scholar 

  34. Wacker JL, Zareie MH, Fong H, Sarikaya M, Muchowski PJ. Hsp70 and Hsp40 attenuate formation of spherical and annular polyglutamine oligomers by partitioning monomer. Nat Struct Mol Biol. 2004;l 1:1215–22.

    Article  CAS  Google Scholar 

  35. Bennett EJ, Bence NF, Jayakumar R, Kopito RR. Global impairment of the ubiquitin-proteasome system by nuclear or cytoplasmic protein aggregates precedes inclusion body formation. Mol Cell. 2005;17:351–65.

    Article  PubMed  CAS  Google Scholar 

  36. Warrick JM, Paulson HL, Gray-Board GL, Bui QT, Fischbeck KH, Pittman RN, Bonini NM. Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila. Cell. 1998;93:939–49.

    Article  PubMed  CAS  Google Scholar 

  37. Chang WH, Cemal CK, Hsu YH, Kuo CL, Nukina N, Chang MH, Hu HT, Li C, Hsieh M. Dynamic expression of Hsp27 in the presence of mutant ataxin-3. Biochem Biophys Res Commun. 2005;336:258–67.

    Article  PubMed  CAS  Google Scholar 

  38. Tsai HF, Lin SJ, Li C, Hsieh M. Decreased expression of Hsp27 and Hsp70 in transformed lymphoblastoid cells from patients with spinocerebellar ataxia type 7. Biochem Biophys Res Commun. 2005;334:1279–86.

    Article  PubMed  CAS  Google Scholar 

  39. Okazawa H. Polyglutamine diseases: a transcription disorder? Cell Mol Life Sci. 2003;60:1427–39.

    Article  PubMed  CAS  Google Scholar 

  40. Orr HT. Microarrays and polyglutamine disorders: reports from the Hereditary Disease Array Group. Hum Mol Genet. 2002;ll:1909–1910.

    Article  Google Scholar 

  41. Katsuno M, Sang C, Adachi H, Minamiyama M, Waza M, Tanaka F, Doyu M, Sobue G. Pharmacological induction of heat-shock proteins alleviates polyglutamine-mediated motor neuron disease. Proc Natl Acad Sci USA. 2005; 102: 16801–06.

    Article  PubMed  CAS  Google Scholar 

  42. Sittler A, Lurz R, Lueder G, Priller J, Lehrach H, Hayer-Hartl MK, Hartl FU, Wanker EE. Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington’s disease. Hum Mol Genet. 2001;10:1307–15.

    Article  PubMed  CAS  Google Scholar 

  43. Satyal SH, Schmidt E, Kitagawa K, Sondheimer N, Lindquist S, Kramer JM, Morimoto RI. Polyglutamine aggregates alter protein folding homeostasis inCaenorhabditis elegans. Proc Natl Acad Sci USA. 2000;97:5750–5.

    Article  PubMed  CAS  Google Scholar 

  44. Morimoto RI. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev. 1998;12:3788–96.

    Article  PubMed  CAS  Google Scholar 

  45. Fujimoto M, Takaki E, Hayashi T, Kitaura Y, Tanaka Y, Inouye S, Nakai A. Active HSF1 significantly suppresses polyglutamine aggregate formation in cellular and mouse models. J Biol Chem. 2005;280:34908–16.

    Article  PubMed  CAS  Google Scholar 

  46. Tonkiss J, Calderwood SK. Regulation of heat shock gene transcription in neuronal cells. Int J Hyperthermia. 2005; 21:433–44.

    Article  PubMed  CAS  Google Scholar 

  47. Xavier IJ, Mercier PA, McLoughlin CM, Ali A, Woodgett JR, Ovsenek N. Glycogen synthase kinase 3beta negatively regulates both DNA-binding and transcriptional activities of heat shock factor 1. J Biol Chem. 2000;275:29147–52.

    Article  PubMed  CAS  Google Scholar 

  48. Jope RS, Johnson GV. The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci. 2004;29: 95–102.

    Article  PubMed  CAS  Google Scholar 

  49. Carmichael J, Sugars KL, Bao YP, Rubinsztein DC. Glycogen synthase kinase-3beta inhibitors prevent cellular polyglutamine toxicity caused by the Huntington’s disease mutation. J Biol Chem. 2002;277:33791–8.

    Article  PubMed  CAS  Google Scholar 

  50. Maroni P, Bendinelli P, Tiberio L, Rovetta F, Piccoletti R, Schiaffonati L. In vivo heat-shock response in the brain: signalling pathway and transcription factor activation. Brain Res Mol Brain Res. 2003;l19:90–99.

    Article  CAS  Google Scholar 

  51. Schiaffonati L, Maroni P, Bendinelli P, Tiberio L, Piccoletti R. Hyperthermia induces gene expression of heat shock protein 70 and phosphorylation of mitogen activated protein kinases in the rat cerebellum. Neurosci Lett. 2001;312:75–8.

    Article  PubMed  CAS  Google Scholar 

  52. Cowan KJ, Diamond MI, Welch J. Polyglutamine protein aggregation and toxicity are linked to the cellular stress response. Hum Mol Genet. 2003;12:1377–91.

    Article  PubMed  CAS  Google Scholar 

  53. Kouroku Y, Fujita E, Jimbo A, Kikuchi T, Yamagata T, Momoi MY, Kominami E, Kuida K, Sakamaki K, Yonehara S, Momoi T. Polyglutamine aggregates stimulate ER stress signals and caspase-12 activation. Hum Mol Genet. 2002;l1:1505–15.

    Article  Google Scholar 

  54. Merienne K, Helmlinger D, Perkin GR, Devys D, Trottier Y. Polyglutamine expansion induces a protein-damaging stress connecting heat shock protein 70 to the JNK pathway. J Biol Chem. 2003;278:16957–67.

    Article  PubMed  CAS  Google Scholar 

  55. Morfini G, Pigino G, Szebenyi G, You Y, Pollema S, Brady ST. JNK mediates pathogenic effects of polyglutamine-expanded androgen receptor on fast axonal transport. Nat Neurosci. 2006;9:907–16.

    Article  PubMed  CAS  Google Scholar 

  56. Apostol BL, Illes K, Pallos J, Bodai L, Wu J, Strand A, Schweitzer ES, Olson JM, Kazantsev A, Marsh JL, Thompson LM. Mutant huntingtin alters MAPK signaling pathways in PC12 and striatal cells: ERK1/2 protects against mutant huntingtin-associated toxicity. Hum Mol Genet. 2006;15:273–85.

    Article  PubMed  CAS  Google Scholar 

  57. Liu YF. Expression of polyglutamine-expanded Huntingtin activates the SEK1-JNK pathway and induces apoptosis in a hippocampal neuronal cell line. J Biol Chem. 1998; 273:28873–7.

    Article  PubMed  CAS  Google Scholar 

  58. Park J, Liu AY. JNK phosphorylates the HSF1 transcriptional activation domain: role of JNK in the regulation of the heat shock response. J Cell Biochem. 2001;82:326–38.

    Article  PubMed  CAS  Google Scholar 

  59. Dai R, Frejtag W, He B, Zhang Y, Mivechi NF. c-Jun NH2-terminal kinase targeting and phosphorylation of heat shock factor-1 suppress its transcriptional activity. J Biol Chem. 2000;275:18210–18.

    Article  PubMed  CAS  Google Scholar 

  60. Kerscher O, Felberbaum R, Hochstrasser M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol. 2006;22:159–180.

    Article  PubMed  CAS  Google Scholar 

  61. Gill G. Something about SUMO inhibits transcription. Curr Opin Genet Dev. 2005;15:536–41.

    Article  PubMed  CAS  Google Scholar 

  62. Beg AA, Scheiffele P. Neuroscience. SUMO wrestles the synapse. Science. 2006;311:962–3.

    Article  PubMed  CAS  Google Scholar 

  63. Hong Y, Rogers R, Matunis MJ, Mayhew CN, Goodson ML, Park-Sarge OK, Sarge KD. Regulation of heat shock transcription factor 1 by stress-induced SUMO-1 modification. J Biol Chem. 2001;276:40263–7.

    PubMed  CAS  Google Scholar 

  64. Goodson ML, Hong Y, Rogers R, Matunis MJ, Park-Sarge OK, Sarge KD. Sumo-1 modification regulates the DNA binding activity of heat shock transcription factor 2, a promyelocytic leukemia nuclear body associated transcription factor. J Biol Chem. 2001;276:18513–18.

    Article  PubMed  CAS  Google Scholar 

  65. Anckar J, Hietakangas V, Denessiouk K, Thiele DJ, Johnson MS, Sistonen L. Inhibition of DNA binding by differential sumoylation of heat shock factors. Mol Cell Biol. 2006;26:955–64.

    Article  PubMed  CAS  Google Scholar 

  66. Hietakangas V, Anckar J, Blomster HA, Fujimoto M, Palvimo JJ, Nakai A, Sistonen L. PDSM, a motif for phosphorylation-dependent SUMO modification. Proc Natl Acad Sci USA. 2006;103:45–50.

    Article  PubMed  CAS  Google Scholar 

  67. Chan HY, Warrick JM, Andriola I, Merry D, Bonini NM. Genetic modulation of polyglutamine toxicity by protein conjugation pathways in Drosophila. Hum Mol Genet. 2002;ll:2895–904.

    Article  Google Scholar 

  68. Steffan JS, Agrawal N, Pallos J, Rockabrand E, Trotman LC, Slepko N, Illes K, Lukacsovich T, Zhu YZ, Cattaneo E, Pandolfi PP, Thompson LM, Marsh JL. SUMO modification of Huntingtin and Huntington’s disease pathology. Science. 2004;304:100–04.

    Article  PubMed  CAS  Google Scholar 

  69. Terashima T, Kawai H, Fujitani M, Maeda K, Yasuda H. SUMO-1 co-localized with mutant atrophin-1 with expanded polyglutamines accelerates intranuclear aggregation and cell death. Neuroreport. 2002;13:2359–64.

    Article  PubMed  CAS  Google Scholar 

  70. Ueda H, Goto J, Hashida H, Lin X, Oyanagi K, Kawano H, Zoghbi HY, Kanazawa I, Okazawa H. Enhanced SUMOylation in polyglutamine diseases. Biochem Biophys Res Commun. 2002;293:307–13.

    Article  PubMed  CAS  Google Scholar 

  71. Hietakangas V, Ahlskog JK, Jakobsson AM, Hellesuo M, Sahlberg NM, Holmberg CI, Mikhailov A, Palvimo JJ, Pirkkala L, Sistonen L. Phosphorylation of serine 303 is a prerequisite for the stress-inducible SUMO modification of heat shock factor 1. Mol Cell Biol. 2003;23: 2953–68.

    Article  PubMed  CAS  Google Scholar 

  72. van Roon-Mom WM, Reid SJ, Jones AL, MacDonald ME, Faull RL, Snell RG. Insoluble TATA-binding protein accumulation in Huntington’s disease cortex. Brain Res Mol Brain Res. 2002;109:l-10.

    Google Scholar 

  73. Schaffar G, Breuer P, Boteva R, Behrends C, Tzvetkov N, Strippel N, Sakahira H, Siegers K, Hayer-Hartl M, Hartl FU. Cellular toxicity of polyglutamine expansion proteins: mechanism of transcription factor deactivation. Mol Cell. 2004;15:95–105.

    Article  PubMed  CAS  Google Scholar 

  74. Yuan CX, Gurley WB. Potential targets for HSF1 within the preinitiation complex. Cell Stress Chaperones. 2000;5: 229–42.

    Article  PubMed  CAS  Google Scholar 

  75. Rouaux C, Loeffler JP, Boutillier AL. Targeting CREB-binding protein (CBP) loss of function as a therapeutic strategy in neurological disorders. Biochem Pharmacol. 2004;68:l157–64.

    Article  CAS  Google Scholar 

  76. Voellmy R. On mechanisms that control heat shock transcription factor activity in metazoan cells. Cell Stress Chaperones. 2004;9:122–133.

    Article  PubMed  CAS  Google Scholar 

  77. Zhong M, Orosz A, Wu C. Direct sensing of heat and oxidation by Drosophila heat shock transcription factor. Mol Cell. 1998;2:101–08.

    Article  PubMed  CAS  Google Scholar 

  78. Westerheide SD, Morimoto RI. Heat shock response modulators as therapeutic tools for diseases of protein conformation. J Biol Chem. 2005;280:33097–100.

    Article  PubMed  CAS  Google Scholar 

  79. Soti C, Nagy E, Giricz Z, Vigh L, Csermely P, Ferdinandy P. Heat shock proteins as emerging therapeutic targets. Br J Pharmacol. 2005;146:769–80.

    Article  PubMed  CAS  Google Scholar 

  80. Cummings CJ, Sun Y, Opal P, Antalffy B, Mestril R, Orr HT, Dillmann WH, Zoghbi HY. Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice. Hum Mol Genet. 2001; 10:1511–18.

    Article  PubMed  CAS  Google Scholar 

  81. Wen FC, Li YH, Tsai HF, Lin CH, Li C, Liu CS, Lii CK, Nukina N, Hsieh M. Down-regulation of heat shock protein 27 in neuronal cells and non-neuronal cells expressing mutant ataxin-3. FEBS Lett. 2003;546:307–14.

    Article  PubMed  CAS  Google Scholar 

  82. Chan HY, Luthi-Carter R, Strand A, Solano SM, Hanson SA, DeJohn MM, Kooperberg C, Chase KO, DiFiglia M, Young AB, Leavitt BR, Cha JH, Aronin N, Hayden MR, Olson JM. Increased huntingtin protein length reduces the number of polyglutamine-induced gene expression changes in mouse models of Huntington’s disease. Hum Mol Genet. 2002;ll:1939–51.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Y. Edwin Chan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huen, N.Y.M., Wong, S.L.A. & Chan, H.Y.E. Transcriptional malfunctioning of heat shock protein gene expression in spinocerebellar ataxias. Cerebellum 6, 111–117 (2007). https://doi.org/10.1080/14734220600996480

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220600996480

Key words

Navigation