Skip to main content

Advertisement

Log in

Strategies to investigate gene expression and function in granule cells

  • Original Article
  • Scientific Papers
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Studying gene expression in granule cells is a major route to understanding the factors required for many key cellular processes such as specification, proliferation, migration, differentiation, apoptosis, tumour formation and neurodegeneration. A greater understanding of these processes will not only provide insight into cerebellum development, but also diseases of the cerebellum. Granule cells can be readily grown in culture and both viral and non-viral strategies have been optimised to allow gene transfer and expression in cultured cells. However, granule cell migration and maturation are inherent parts of cerebellum development and these rely on interactions with other cells. Hence, a true picture of gene function in these cells can only be obtained when tissue context is maintained. Studies of gene function in this context can be achieved by creation of mouse models. Conditional mouse models, where loss of gene expression is restricted as far as possible to granule cells, are by far the most informative resource in this respect. Despite their obvious benefits, the production of mouse models is both costly and time-consuming and this may be further compounded by a potential lack of phenotype due to redundancy of gene function. Organotypic slice cultures, on the other hand, are a comparatively cheap and accessible model for studies of gene function where tissue context is maintained. Recent technologies have provided the means to manipulate gene expression in such systems and are beginning to yield valuable insights into the molecular regulation of cerebellum development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rios I, Alvarez-Rodriguez R, Marti E, Pons S. Bmp2 antagonizes sonic hedgehog-mediated proliferation of cerebellar granule neurones through Smad5 signalling. Development. 2004;131(13):3159–68.

    Article  PubMed  CAS  Google Scholar 

  2. Miyata T, Maeda T, Lee JE. NeuroD is required for differentiation of the granule cells in the cerebellum and hippocampus. Genes Dev. 1999;13(13):1647–52.

    Article  PubMed  CAS  Google Scholar 

  3. Gleichmann M, Buchheim G, El-Bizri H, et al. Identification of inhibitor-of-differentiation 2 (Id2) as a modulator of neuronal apoptosis. J Neurochem. 2002;80(5):755–62.

    Article  PubMed  CAS  Google Scholar 

  4. Snyder EY, Deitcher DL, Walsh C, Arnold-Aldea S, Hartwieg EA, Cepko CL. Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell. 1992;68(1):33–51.

    Article  PubMed  CAS  Google Scholar 

  5. Gao WQ, Hatten ME. Immortalizing oncogenes subvert the establishment of granule cell identity in developing cerebellum. Development. 1994;120(5):1059–70.

    PubMed  CAS  Google Scholar 

  6. Ciemerych MA, Kenney AM, Sicinska E, et al. Development of mice expressing a single D-type cyclin. Genes Dev. 2002;16(24):3277–89.

    Article  PubMed  CAS  Google Scholar 

  7. Linseman DA, Phelps RA, Bouchard RJ, et al. Insulin-like growth factor-I blocks Bcl-2 interacting mediator of cell death (Bim) induction and intrinsic death signaling in cerebellar granule neurons. J Neurosci. 2002;22(21):9287–97.

    PubMed  CAS  Google Scholar 

  8. Linseman DA, McClure ML, Bouchard RJ, Laessig TA, Ahmadi FA, Heidenreich KA. Suppression of death receptor signaling in cerebellar Purkinje neurons protects neighboring granule neurons from apoptosis via an insulin-like growth factor I-dependent mechanism. J Biol Chem. 2002;277(27): 24546–53.

    Article  PubMed  CAS  Google Scholar 

  9. Simons M, Beinroth S, Gleichmann M, et al. Adenovirusmediated gene transfer of inhibitors of apoptosis protein delays apoptosis in cerebellar granule neurons. J Neurochem. 1999;72(1):292–301.

    Article  PubMed  CAS  Google Scholar 

  10. Wang W, Stock RE, Gronostajski RM, Wong YW, Schachner M, Kilpatrick DL. A role for nuclear factor I in the intrinsic control of cerebellar granule neuron gene expression. J Biol Chem. 2004;279(51):53491–7.

    Article  PubMed  CAS  Google Scholar 

  11. Xia Z, Dudek H, Miranti CK, Greenberg ME. Calcium influx via the NMDA receptor induces immediate early gene transcription by a MAP kinase/ERK-dependent mechanism. JNeurosci. 1996;16(17):5425–36.

    CAS  Google Scholar 

  12. Trioulier Y, Torch S, Blot B, et al. Alix, a protein regulating endosomal trafficking, is involved in neuronal death. J Biol Chem. 2004;279(3):2046–52.

    Article  PubMed  CAS  Google Scholar 

  13. Konishi Y, Stegmuller J, Matsuda T, Bonni S, Bonni A. Cdh1-APC controls axonal growth and patterning in the mammalian brain. Science. 2004;303(5660):1026–30.

    Article  PubMed  CAS  Google Scholar 

  14. Uo T, Kinoshita Y, Morrison RS. Neurons exclusively express N-Bak, a BH3 domain-only Bak isoform that promotes neuronal apoptosis. J Biol Chem. 2005;280(10): 9065–73.

    Article  PubMed  CAS  Google Scholar 

  15. Guerra-Crespo M, Charli JL, Rosales-Garcia VH, Pedraza-Alva G, Perez-Martinez L. Polyethylenimine improves the transfection efficiency of primary cultures of post-mitotic rat fetal hypothalamic neurons. J Neurosci Methods. 2003;127(2):179–92.

    Article  PubMed  CAS  Google Scholar 

  16. Leclere PG, Panjwani A, Docherty R, Berry M, Pizzey J, Tonge DA. Effective gene delivery to adult neurons by a modified form of electroporation. J Neurosci Methods. 2005;142(1):137–43.

    Article  PubMed  CAS  Google Scholar 

  17. Caddy KW, Biscoe TJ. Structural and quantitative studies on the normal C3H and Lurcher mutant mouse. Philos Trans R Soc Lond B Biol Sci. 1979;287(1020):167–201.

    Article  PubMed  CAS  Google Scholar 

  18. Zuo J, DeJager PL, Takahashi KA, Jiang W, Linden DJ, Heintz N. Neurodegeneration in Lurcher mice caused by mutation in delta2 glutamate receptor gene. Nature. 1997;388(6644):769–73.

    Article  PubMed  CAS  Google Scholar 

  19. Hamilton BA, Frankel WN, Kerrebrock AW, et al. Disruption of the nuclear hormone receptor RORalpha in staggerer mice. Nature. 1996;379(6567):736–9.

    Article  PubMed  CAS  Google Scholar 

  20. Sidman RL, Lane PW, Dickie MM. Staggerer, a new mutation in the mouse affecting the cerebellum. Science. 1962;137:610–2.

    Article  PubMed  CAS  Google Scholar 

  21. Selimi F, Doughty M, Delhaye-Bouchaud N, Mariani J. Target-related and intrinsic neuronal death in Lurcher mutant mice are both mediated by caspase-3 activation. J Neurosci. 2000;20(3):992–1000.

    PubMed  CAS  Google Scholar 

  22. Sidman RL, Green MC, Appel SH. In: Catalog of the neurological mutants of the mouse. Cambridge, MA: Harvard University Press; 1965. pp 66–7.

    Google Scholar 

  23. Patil N, Cox DR, Bhat D, Faham M, Myers RM, Peterson AS. A potassium channel mutation in weaver mice implicates membrane excitability in granule cell differentiation. Nat Genet. 1995;11(2):126–9.

    Article  PubMed  CAS  Google Scholar 

  24. Surmeier DJ, Mermelstein PG, Goldowitz D. The weaver mutation of GIRK2 results in a loss of inwardly rectifying K+ current in cerebellar granule cells. Proc Natl Acad Sci USA. 1996;93(20):11191–5.

    Article  PubMed  CAS  Google Scholar 

  25. Migheli A, Attanasio A, Lee WH, Bayer SA, Ghetti B. Detection of apoptosis in weaver cerebellum by electron microscopic in situ end-labeling of fragmented DNA. Neurosci Lett. 1995;199(1):53–6.

    Article  PubMed  CAS  Google Scholar 

  26. Peng J, Wu Z, Wu Y, et al. Inhibition of caspases protects cerebellar granule cells of the weaver mouse from apoptosis and improves behavioral phenotype. J Biol Chem. 2002; 277(46):44285–91.

    Article  PubMed  CAS  Google Scholar 

  27. Maricich, Soha J, Trenkner E, Herrup K. Failed cell migration and death of Purkinje cells and deep nuclear neurons in the weaver cerebellum. J Neurosci. 1997;17(10):3675–83.

    PubMed  CAS  Google Scholar 

  28. Klein JA, Longo-Guess CM, Rossmann MP, et al. The harlequin mouse mutation downregulates apoptosis-inducing factor. Nature. 2002;419(6905):367–74.

    Article  PubMed  CAS  Google Scholar 

  29. Bronson RT, Lane PW, Harris BS, Harrison MT. Harlequin (Hq) produces progressive cerebellar atrophy. Mouse Genome. 1990;87:110.

    Google Scholar 

  30. Herrup K, Busser JC. The induction of multiple cell cycle events precedes target-related neuronal death. Development. 1995;121(8):2385–95.

    PubMed  CAS  Google Scholar 

  31. Migheli A, Piva R, Casolino S, Atzori C, Dlouhy SR, Ghetti B. A cell cycle alteration precedes apoptosis of granule cell precursors in the weaver mouse cerebellum. Am J Pathol. 1999;155(2):365–73.

    PubMed  CAS  Google Scholar 

  32. Ye P, Xing Y, Dai Z, D’Ercole AJ. In vivo actions of insulinlike growth factor-I (IGF-I) on cerebellum development in transgenic mice: evidence that IGF-I increases proliferation of granule cell progenitors. Brain Res Dev Brain Res. 1996;95(1):44–54.

    Article  PubMed  CAS  Google Scholar 

  33. Zhang J, Popken GJ, Ye P, D’Ercole AJ. Down-regulation of 14-3-3 eta gene expression by IGF-I in mouse cerebellum during postnatal development. Brain Res Dev Brain Res. 2003;143(2):199–206.

    Article  PubMed  CAS  Google Scholar 

  34. Chrysis D, Calikoglu AS, Ye P, D’Ercole AJ. Insulin-like growth factor-I overexpression attenuates cerebellar apoptosis by altering the expression of Bcl family proteins in a developmentally specific manner. J Neurosci. 2001;21(5): 1481–9.

    PubMed  CAS  Google Scholar 

  35. Zhang J, D’Ercole AJ. Expression of Mcl-1 in cerebellar granule neurons is regulated by IGF-I in a developmentally specific fashion. Brain Res Dev Brain Res. 2004;152(2): 255–63.

    Article  PubMed  CAS  Google Scholar 

  36. Ben-Arie N, Bellen HJ, Armstrong DL, et al. Math1 is essential for genesis of cerebellar granule neurons. Nature. 1997;390(6656):169–72.

    Article  PubMed  CAS  Google Scholar 

  37. Helms AW, Johnson JE. Progenitors of dorsal commissural interneurons are defined by MATH1 expression. Development. 1998;125(5):919–28.

    PubMed  CAS  Google Scholar 

  38. Gazit R, Krizhanovsky V, Ben-Arie N. Math1 controls cerebellar granule cell differentiation by regulating multiple components of the Notch signaling pathway. Development. 2004;131(4):903–13.

    Article  PubMed  CAS  Google Scholar 

  39. Helms AW, Abney AL, Ben-Arie N, Zoghbi HY, Johnson JE. Autoregulation and multiple enhancers control Math1 expression in the developing nervous system. Development. 2000;127(6):1185–96.

    PubMed  CAS  Google Scholar 

  40. Lumpkin EA, Collisson T, Parab P, et al. Math1-driven GFP expression in the developing nervous system of transgenic mice. Gene Expr Patterns. 2003;3(4):389–95.

    Article  PubMed  CAS  Google Scholar 

  41. Vaillant C, Didier-Bazes M, Hutter A, Belin MF, Thomasset N. Spatiotemporal expression patterns of metalloproteinases and their inhibitors in the postnatal developing rat cerebellum. J Neurosci. 1999;19(12):4994–5004.

    PubMed  CAS  Google Scholar 

  42. Vaillant C, Meissirel C, Mutin M, Belin MF, Lund LR, Thomasset N. MMP-9 deficiency affects axonal outgrowth, migration, and apoptosis in the developing cerebellum. Mol Cell Neurosci. 2003;24(2):395–408.

    Article  PubMed  CAS  Google Scholar 

  43. Chiesa R, Piccardo P, Ghetti B, Harris DA. Neurological illness in transgenic mice expressing a prion protein with an insertional mutation. Neuron. 1998;21(6):1339–51.

    Article  PubMed  CAS  Google Scholar 

  44. Chiesa R, Drisaldi B, Quaglio E, et al. Accumulation of protease-resistant prion protein (PrP) and apoptosis of cerebellar granule cells in transgenic mice expressing a PrP insertional mutation. Proc Natl Acad Sci USA. 2000;97(10):5574–9.

    Article  PubMed  CAS  Google Scholar 

  45. Selimi F, Vogel MW, Mariani J. Bax inactivation in lurcher mutants rescues cerebellar granule cells but not purkinje cells or inferior olivary neurons. JNeurosci. 2000;20(14):5339–45.

    CAS  Google Scholar 

  46. Chiesa R, Piccardo P, Dossena S, et al. Bax deletion prevents neuronal loss but not neurological symptoms in a transgenic model of inherited prion disease. Proc Natl Acad Sci USA. 2005;102(1):238–43.

    Article  PubMed  CAS  Google Scholar 

  47. Blaess S, Graus-Porta D, Belvindrah R, et al. Beta1-integrins are critical for cerebellar granule cell precursor proliferation. J Neurosci. 2004;24(13):3402–12.

    Article  PubMed  CAS  Google Scholar 

  48. Graus-Porta D, Blaess S, Senften M, et al. Beta1-class integrins regulate the development of laminae and folia in the cerebral and cerebellar cortex. Neuron. 2001;31(3):367–79.

    Article  PubMed  CAS  Google Scholar 

  49. Toggas SM, Masliah E, Rockenstein EM, Rall GF, Abraham CR, Mucke L. Central nervous system damage produced by expression of the HIV-1 coat protein gp120 in transgenic mice. Nature. 1994;367(6459):188–93.

    Article  PubMed  CAS  Google Scholar 

  50. Johnson WB, Ruppe MD, Rockenstein EM. et al. Indicator expression directed by regulatory sequences of the glial fibrillary acidic protein (GFAP) gene: in vivo comparison of distinct GFAP-lacZ transgenes. Glia. 1995;13(3):174–84.

    Article  PubMed  CAS  Google Scholar 

  51. Zinyk DL, Mercer EH, Harris E, Anderson DJ, Joyner AL. Fate mapping of the mouse midbrain-hindbrain constriction using a site-specific recombination system. Curr Biol. 1998;8(11):665–8.

    Article  PubMed  CAS  Google Scholar 

  52. Tronche F, Kellendonk C, Kretz O, et al. Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat Genet. 1999;23(1):99–103.

    Article  PubMed  CAS  Google Scholar 

  53. Aller MI, Jones A, Merlo D, et al. Cerebellar granule cell Cre recombinase expression. Genesis. 2003;36(2):97–103.

    Article  PubMed  CAS  Google Scholar 

  54. Funfschilling U, Reichardt LF. Cre-mediated recombination in rhombic lip derivatives. Genesis. 2002;33(4):160–9.

    Article  PubMed  CAS  Google Scholar 

  55. Guo H, Mao C, Jin XL, et al. Cre-mediated cerebellum- and hippocampus-restricted gene mutation in mouse brain. Biochem Biophys Res Commun. 2000;269(1):149–54.

    Article  PubMed  CAS  Google Scholar 

  56. Tsujita M, Mori H, Watanabe M, Suzuki M, Miyazaki J, Mishina M. Cerebellar granule cell-specific and inducible expression of Cre recombinase in the mouse. J Neurosci. 1999;19(23):10318–23.

    PubMed  CAS  Google Scholar 

  57. Kwon CH, Zhu X, Zhang J, et al. Pten regulates neuronal soma size: A mouse model of Lhermitte-Duclos disease. Nat Genet. 2001;29(4):404–11.

    Article  PubMed  CAS  Google Scholar 

  58. Marino S, Vooijs M, van DerGulden H, Jonkers J, Berns A. Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev. 2000;14(8):994–1004.

    PubMed  CAS  Google Scholar 

  59. Marino S, Hoogervoorst D, Brandner S, Berns A. Rb and p107 are required for normal cerebellar development and granule cell survival but not for Purkinje cell persistence. Development. 2003;130(15):3359–68.

    Article  PubMed  CAS  Google Scholar 

  60. Knoepfler PS, Cheng PF, Eisenman RN. N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes Dev. 2002;16(20):2699–712.

    Article  PubMed  CAS  Google Scholar 

  61. Corrales JD, Rocco GL, Blaess S, Guo Q, Joyner AL. Spatial pattern of sonic hedgehog signaling through Gli genes during cerebellum development. Development. 2004;131(22):5581–90.

    Article  PubMed  CAS  Google Scholar 

  62. Ridoux V, Robert J, Perricaudet M, Mallet J, Le Gal La Salle G. Adenovirus mediated gene transfer in organotypic brain slices. Neurobiol Dis. 1995;2(1):49–54.

    Article  PubMed  CAS  Google Scholar 

  63. Baboval T, Crandall JE, Kinnally E, Chou DK, Smith FI. Restriction of high CD15 expression to a subset of rat cerebellar astroglial cells can be overcome by transduction with adenoviral vectors expressing the rat alpha 1,3-fucosyltransferase IV gene. Glia. 2000;31(2):144–54.

    Article  PubMed  CAS  Google Scholar 

  64. Sato Y, Shiraishi Y, Furuichi T. Cell specificity and efficiency of the Semliki forest virus vector- and adenovirus vector-mediated gene expression in mouse cerebellum. J Neurosci Methods. 2004;137(1):111–21.

    Article  PubMed  CAS  Google Scholar 

  65. Arnold D, Feng L, Kim J, Heintz N. A strategy for the analysis of gene expression during neural development. Proc Natl Acad Sci USA. 1994;91(21):9970–4.

    Article  PubMed  CAS  Google Scholar 

  66. Fenili D, De Boni U. Organotypic slices in vitro: Repeated, same-cell, high-resolution tracking of nuclear and cytoplasmic fluorescent signals in live, transfected cerebellar neurons by confocal microscopy. Brain Res Brain Res Protoc. 2003;11(2):101–10.

    Article  PubMed  Google Scholar 

  67. Murphy RC, Messer A. Gene transfer methods for CNS organotypic cultures: A comparison of three nonviral methods. Mol Ther. 2001;3(1):113–21.

    Article  PubMed  CAS  Google Scholar 

  68. Wellmann H, Kaltschmidt B, Kaltschmidt C. Optimized protocol for biolistic transfection of brain slices and dissociated cultured neurons with a hand-held gene gun. J Neurosci Methods. 1999;92(1-2):55–64.

    Article  PubMed  CAS  Google Scholar 

  69. Wood KA, Dipasquale B, Youle RJ. In situ labeling of granule cells for apoptosis-associated DNA fragmentation reveals different mechanisms of cell loss in developing cerebellum. Neuron. 1993;11(4):621–32.

    Article  PubMed  CAS  Google Scholar 

  70. Lossi L, Gambino G, Mioletti S, Merighi A. In vivo analysis reveals different apoptotic pathways in pre-and postmigratory cerebellar granule cells of rabbit. J Neurobiol. 2004;60(4): 437–52.

    Article  PubMed  CAS  Google Scholar 

  71. Lossi L, Tamagno I, Merighi A. Molecular morphology of neuronal apoptosis: analysis of caspase 3 activation during postnatal development of mouse cerebellar cortex. J Mol Histol. 2004;35(6):621–9.

    Article  PubMed  CAS  Google Scholar 

  72. Neumann E, Kakorin S, Toensing K. Fundamentals of electroporative delivery of drugs and genes. Bioelectrochem Bioenerg. 1999;48(1):3–16.

    Article  PubMed  CAS  Google Scholar 

  73. Nakamura H, Katahira T, Sato T, Watanabe Y, Funahashi J. Gain- and loss-of-function in chick embryos by electroporation. Mech Dev. 2004;121(9):1137–43.

    Article  PubMed  CAS  Google Scholar 

  74. Tabata H, Nakajima K. Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex. Neuroscience. 2001;103(4):865–72.

    Article  PubMed  CAS  Google Scholar 

  75. Saito T, Nakatsuji N. Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev Biol. 2001;240(1):237–46.

    Article  PubMed  CAS  Google Scholar 

  76. Yang ZJ, Appleby VJ, Coyle B, et al. Novel strategy to study gene expression and function in developing cerebellar granule cells. J Neurosci Methods. 2004;132(2):149–60.

    Article  PubMed  CAS  Google Scholar 

  77. Gieffers C, Peters BH, Kramer ER, Dotti CG, Peters JM. Expression of the CDH1-associated form of the anaphasepromoting complex in postmitotic neurons. Proc Natl Acad Sci USA. 1999;96(20):11317–22.

    Article  PubMed  CAS  Google Scholar 

  78. Peters JM. The anaphase-promoting complex: proteolysis in mitosis and beyond. Mol Cell. 2002;9(5):931–43.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beth Coyle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savill, R.M., Scotting, P.J. & Coyle, B. Strategies to investigate gene expression and function in granule cells. Cerebellum 4, 271–278 (2005). https://doi.org/10.1080/14734220500367790

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220500367790

Key words

Navigation