Skip to main content
Log in

The cerebellum may implement the appropriate coupling of sensory inputs and motor responses: Evidence from vestibular physiology

  • Scientific Papers
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Starting from a survey of current ideas on the role of the cerebellum in sensorimotor transformations, the present review summarizes the results of recent experiments showing that (a) somatosensory signals modify the spatial organization of the postural reflexes, thus leading to body stability, and (b) otolith input changes the plane of reflex eye movements, by keeping it perpendicular to the gravito-inertial vector. Evidence will be given that both transformations require the integrity of specific cerebellar regions. These data indicates that the cerebellum allows an optimal input-output coupling in relation to the ultimate behavioural goal of the motor activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fukson OI, Berkinblint MB, Feldman AJ. The spinal frog takes into account the scheme of ist body during the wiping reflex. Science. 1980;209:1261–3.

    Article  PubMed  CAS  Google Scholar 

  2. Pearson K, Gordon J. Spinal reflexes. In: Kandel ER, Schwartz JH, Jessell TM, editors. Principles of neural science. 4th edn. New York: McGraw-Hill; 2000. pp 713–36.

    Google Scholar 

  3. Roll R, Velay JL, Roll JP. Eye and neck proprioceptive messages contribute to the spatial coding of retinal input in visually oriented activity. Exp Brain Res. 1991;85: 423–31.

    Article  PubMed  CAS  Google Scholar 

  4. Stein JF, Glickstein M. Role of the cerebellum in visual guidance of movement. Physiol Rev. 1992;72:967–1017.

    PubMed  CAS  Google Scholar 

  5. Fogassi L, Gallese V, di Pellegrino G, et al. Space coding by premotor cortex. Exp Brain Res. 1992;89:686–90.

    Article  PubMed  CAS  Google Scholar 

  6. Galletti C, Battaglia PP, Fattori P. Parietal neurons encoding spatial locations in craniotopic coordinates. Exp Brain Res. 1993;96:221–9.

    Article  PubMed  CAS  Google Scholar 

  7. Brotchie PR, Andersen RA, Lawrence HS, Goodman S. Head position signals used by parietal neurons to encode locations of visual stimuli. Nature. 1995;375:232–5.

    Article  PubMed  CAS  Google Scholar 

  8. Snyder LH, Grieve KL, Brotchie P, Andersen RA. Separate body-and world referenced representations of visual space in parietal cortex. Nature. 1998;394:887–90.

    Article  PubMed  CAS  Google Scholar 

  9. Lacquaniti F, Caminiti R. Visuo-motor transformations for arm reaching. Eur J Neurosci. 1998;10:195–203.

    Article  PubMed  CAS  Google Scholar 

  10. Bloedel JR, Bracha V. On the cerebellum, cutaneomuscular reflexes, movement control and the elusive engrams of memory. Behav Brain Res. 1995;68:1–44.

    Article  PubMed  CAS  Google Scholar 

  11. Manzoni D, Andre P, Pompeiano O. Changes in gain and spatiotemporal properties of the vestibulospinal reflex after injection of a GABA-A agonist in the cerebellar anterior vermis. J Vest Res. 1997;7:7–20.

    Article  CAS  Google Scholar 

  12. Kolb FP, Lachauer S, Maschke M, Timmann D. Classically conditioned postural reflex in cerebellar patients. Exp Brain Res. 2004;158:163–79.

    Article  PubMed  CAS  Google Scholar 

  13. Bloedel JR, Bracha V, Milak M, Shimansky YC. Cerebellar contributions to the acquisition and execution of learned reflex and volitional movements. Prog Brain Res. 1997; 114:499–509.

    PubMed  CAS  Google Scholar 

  14. Ito M, editor. The cerebellum and neural control. New York: Raven Press, 1984.

    Google Scholar 

  15. Robinson FR, Fuchs AF. The role of the cerebellum in voluntary eye movements. Annu Rev Neurosci. 2001; 24:981–1004.

    Article  PubMed  CAS  Google Scholar 

  16. Nezafat R, Shadmehr R, Holcomb HH. Long-term adaptation to dynamics of reaching movements: A PET study. Exp Brain Res. 2001;140:66–76.

    Article  PubMed  CAS  Google Scholar 

  17. Baizer JS, Kralj-Hans I, Glickstein M. Cerebellar lesions and prism adaptation in macaque monkeys. J Neurophysiol. 1999;81:1960–5.

    PubMed  CAS  Google Scholar 

  18. Thach WT, Goodkin HP, Keating JG. The cerebellum and the adaptive coordination of movement. Annu Rev Neurosci. 1992;15:403–42.

    Article  PubMed  CAS  Google Scholar 

  19. Blomnfield S, Marr D. How the cerebellum may be used. Nature. 1979;227:1224–8.

    Article  Google Scholar 

  20. Albus JS. A theory of cerebellar function. Math Biosci. 1971;10:25–61.

    Article  Google Scholar 

  21. Houk JC, Buckingham JT, Barto AG. Models of the cerebellum and motor learning. Behav Brain Sci. 1996; 19:368–83.

    Google Scholar 

  22. Blakemore SJ, Sirigu A. Action prediction in the cerebellum and in the parietal lobe. Exp Brain Res. 2003;153:239–45.

    Article  PubMed  Google Scholar 

  23. Bastian AJ, Martin TA, Keating JG, Thach WT. Cerebellar ataxia: Abnormal control of interaction torques across multiple joints. J Neurophysiol. 1996;76:492–509.

    PubMed  CAS  Google Scholar 

  24. Smith AM. Does the cerebellum learn strategies for the optimal time varying control of joint stiffness? Behav Brain Sci. 1996;19:399–410.

    Google Scholar 

  25. Kawato M, Gomi H. A computational model of four regions in the cerebellum based on feedback-error learning. Biol Cibern. 1992;68:95–103.

    Article  CAS  Google Scholar 

  26. Welsh JP, Llin’as R. Some organizing principles for the control of movement based on olivocerebellar physiology. Progr Brain Res. 1997;114:449–61.

    CAS  Google Scholar 

  27. Bloedel JR. Functional heterogeneity with structural homogeneity: How does the cerebellum operate? Behav Brain Sci. 1992;15:666–78.

    Google Scholar 

  28. Glickstein M. How are visual areas of the brain connected to motor areas for the sensory guidance of movement? Trends Neurosci. 2000;23:613–17.

    Article  PubMed  CAS  Google Scholar 

  29. Clower DM, West RA, Lynch JC, Strick PL. The inferior parietal lobule is the target of output from the superior colliculus, hippocampus and cerebellum. J Neurosci. 2001;21:6283–91.

    PubMed  CAS  Google Scholar 

  30. Middleton FA, Strick PL. Cerebellar output channels. Int Rev Neurobiol. 1997;41:61–82.

    Article  PubMed  CAS  Google Scholar 

  31. Chan YS, Manzoni D, Pompeiano O. Response characteristics of cerebellar dentate and lateral cortex neurons to sinusoidal stimulation of neck and labyrinth receptors. Neuroscience. 1982;7:2993–3011.

    Article  PubMed  CAS  Google Scholar 

  32. Pellionisz A, Llin’as R. Tensorial approach to the geometry of brain function: Cerebellar coordination via a metric tensor. Neuroscience. 1980;5:1125–36.

    Article  PubMed  CAS  Google Scholar 

  33. Rossetti Y, Tadary B, Prablanc C. Optimal contribution of head and eye positions to spatial accuracy in man tested by visually directed pointing. Exp Brain Res. 1994;97:487–96.

    Article  PubMed  CAS  Google Scholar 

  34. Weiner M, Hallet M, Funkenstein HH. Adaptation to lateral displacement of vision in patients with lesions of the central nervous system. Neurology. 1983;33:766–82.

    PubMed  CAS  Google Scholar 

  35. Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT. Throwing while looking trough prisms. I. Focal olivocerebellar lesions impair adaptation. Brain. 1996;119: 1183–98.

    Article  PubMed  Google Scholar 

  36. Ghilardi M, Ghez C, Dhawan V, Moeller J, Mentis M, Nakamura T, Antonini A, Eidelber D. Patterns of regional brain activation associated with different forms of motor learning. Brain Res. 2000;871:127–45.

    Article  PubMed  CAS  Google Scholar 

  37. Krakauer JW, Ghilardi MF, Mentis M, Barnes A, Veytsman M, Eidelberg D. Differential cortical and subcortical activations in learning rotations and gains for reaching: A PET study. J Neurophysiol. 2003;91:924–33.

    Article  PubMed  Google Scholar 

  38. Ebner TJ, Fu Q. What features of visually guided arm movements are encoded in the simple spike discharge of cerebellar Purkinje cells? Progr Brain Res. 1997;114:431–47.

    CAS  Google Scholar 

  39. Horak FB, MacPherson JM. Postural orientation and equilibrium. In: Rowell LB, Shepherd JT, editors. Handbook of physiology, Section 12: Exercise: Regulation and integration of multiple systems. New York: Oxford University Press; 1996. pp 255–92.

    Google Scholar 

  40. Mergner T, Huber W, Becker W. Vestibular-neck interaction and transformation of sensory coordinates. J Vest Res. 1997;7:347–67.

    Article  CAS  Google Scholar 

  41. Mergner T, Rosemeier T. Interaction of vestibular somatosensory and visual signals for postural control and motion perception under terrestrial and microgravity conditions —a conceptual model. Brain Res Rev. 1998;28:118–35.

    Article  PubMed  CAS  Google Scholar 

  42. Wilson VJ, Schor RH, Suzuki I, Park BR. Spatial organization of neck and vestibular reflexes acting on the forelimbs of the decerebrate cat. J Neurophysiol. 1986;55:514–26.

    PubMed  CAS  Google Scholar 

  43. Lindsay KW, Roberts TDM, Rosenberg JR. Asymmetric tonic labyrinth reflexes and their interaction with neck reflexes in the decerebrate cats. J Physiol (Lond). 1976; 261:583–601.

    CAS  Google Scholar 

  44. Fitzpatrick R, Burke D, Gandevia SC. Task dependent reflex responses and movement illusions evoked by galvanic vestibular stimulation in standing humans. J Physiol (Lond). 1994;478:362–72.

    Google Scholar 

  45. Nashner LM, Wolfsen P. Influence of head position and proprioceptive cues on short latency postural reflexes evoked by galvanic stimulation of the human labyrinth. Brain Res. 1974;67:255–68.

    Article  PubMed  CAS  Google Scholar 

  46. Lund S, Broberg C. Effects of different head positions on postural sway induced by a reproducible vestibular error signal. Acta Physiol Scand. 1983;117:307–09.

    PubMed  CAS  Google Scholar 

  47. Britton TC, Day BL, Brown P, Rothwell JC, Thompson PD, Marsden CD. Postural electromyographic responses in the arm and leg following galvanic vestibular stimulation in man. Exp Brain Res. 1993;94:143–51.

    Article  PubMed  CAS  Google Scholar 

  48. Ivanenko YP, Grasso R, Lacquaniti F. Effect of gaze on postural responses to neck proprioceptive and vestibular stimulation in humans. J Physiol (Lond). 1999;519:301–14.

    Article  CAS  Google Scholar 

  49. Wolsley CJ, Sakellari V, Bronstein AM. Reorientation of visually evoked postural responses by different eye-in-orbit and head-on trunk angular positions. Exp Brain Res. 1996;111:283–8.

    Article  PubMed  CAS  Google Scholar 

  50. Schor RH, Miller AD. Vestibular reflex in neck and forelimb muscles evoked by roll tilt. J Neurophysiol. 1981;46: 167–78.

    PubMed  CAS  Google Scholar 

  51. Kasper J, Schor RH, Wilson VJ. Response of vestibular neurons to head rotation in vertical planes. I. Response to vestibular stimulation. J Neurophysiol. 1988;60:1753–64.

    PubMed  CAS  Google Scholar 

  52. Bolton PS, Goto T, Schor RH, Wilson VJ, Yamagata Y, Yates BJ. Response of pontomedullary reticulospinal neurons to vestibular stimuli in vertical planes. Role in vertical vestibulospinal reflexes of the decerebrate cat. J Neurophysiol. 1992;67:639–47.

    PubMed  CAS  Google Scholar 

  53. Pompeiano O. Functional organization of the cerebellar projections to the spinal cord. Progr Brain Res. 1967; 25:282–321.

    CAS  Google Scholar 

  54. Denoth F, Magherini PC, Pompeiano O, Stanojevi’c M. Responses of Purkinje cells of the cerebellar vermis to neck and macular vestibular inputs. Pflügers Arch. 1979;381: 87–98.

    Article  PubMed  CAS  Google Scholar 

  55. Pompeiano O, Andre P, Manzoni D. Spatiotemporal response properties of cerebellar Purkinje cells to animal displacement: a population analysis. Neurosci. 1997;81: 609–26.

    Article  CAS  Google Scholar 

  56. Schor RH, Angelaki DE. The algebra of neuronal response vectors. Ann NY Acad Sci. 1992;656:190–204.

    Article  PubMed  CAS  Google Scholar 

  57. Manzoni D, Pompeiano O, Andre P. Neck influences on the spatial properties of vestibulospinal reflex in decerebrate cats: role of the cerebellar anterior vermis. J Vest Res. 1998;8: 283–97.

    Article  CAS  Google Scholar 

  58. Manzoni D, Pompeiano O, Bruschini L, Andre P. Neck input modifies the reference frame for coding labyrinthine signals in the cerebellar vermis: A cellular analysis. Neuroscience. 1999;93:1095–107.

    Article  PubMed  CAS  Google Scholar 

  59. Kleine JF, Guan Y, Kipiani E, Glonti L, Hoshi M, Buttner U. Trunk position influences vestibular responses of fastigial nucleus neurons in the alert monkey. J Neurophysiol. 2004;91:2090–100.

    Article  PubMed  CAS  Google Scholar 

  60. Shaikh AG, Meng H, Angelaki DE. Multiple reference frames for motion in the primate cerebellum. J Neurosci. 2004; 24:4491–7.

    Article  PubMed  CAS  Google Scholar 

  61. Barresi M, Bruschini L, Li Volsi G, Manzoni D. Horizontal rotation of the foreleg modifies vestibular responses of vermal P-cells. Pflügers Arch. in press.

  62. Coulter JD, Mergner T, Pompeiano O. Effects of static tilt on cervical spinoreticular tract neurons. J Neurophysiol. 1976;39:45–62.

    PubMed  CAS  Google Scholar 

  63. Grant G, Oscarsson O, Rosen I. Functional organization of the spino-reticulo-cerebellar path with identification of its spinal components. Exp Br Res. 1966;1:306–19.

    CAS  Google Scholar 

  64. Eccles RM, Lundberg A. Synaptic actions in motoneurones by afferents which may evoke the flexion reflex. Arch Ital Biol. 1959;97:199–221.

    Google Scholar 

  65. Angelaki DE, Hess BJM. Inertial representation of angular motion in the vestibular system of the rhesus monkeys. I. Vestibulo-ocular reflex. J Neurophysiol. 1994;71:1222–49.

    PubMed  CAS  Google Scholar 

  66. Dai M, Raphan T, Cohen B. Spatial orientation of the vestibular system: Dependence of optokinetic after-nystagmus on gravity. J Neurophysiol. 1991;66:1422–39.

    PubMed  CAS  Google Scholar 

  67. Sheliga BM, Yakushin SB, Silvers A, Raphan T, Cohen B. Control of spatial orientation of the angular vestibulo-ocular reflex by the nodulus and uvula of the vestibulocerebellum. Ann N Y Acad Sci. 1999;28:94–122.

    Article  Google Scholar 

  68. Wearne S, Raphan T, Cohen B. Control of spatial orientation of the angular vestibuloocular reflex by the nodulus ans uvula. J Neurophysiol. 1998;79:2690–715.

    PubMed  CAS  Google Scholar 

  69. Angelaki DE, Hess BJ. Inertial representation of angular motion in the vestibular system of rhesus monkeys. II. Otolith-controlled transformation that depends on an intact cerebellar nodulus. J Neurophysiol. 1995;73: 1729–51.

    PubMed  CAS  Google Scholar 

  70. Cohen B, John P, Yakushin SB, Buettner-Ennever J, Raphan T. The nodulus and uvula: Source of cerebellar control of spatial orientation of the angular vestibulo-ocular reflex. Ann NY Acad Sci. 2002;978: 28–45.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Manzoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manzoni, D. The cerebellum may implement the appropriate coupling of sensory inputs and motor responses: Evidence from vestibular physiology. Cerebellum 4, 178–188 (2005). https://doi.org/10.1080/14734220500193493

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220500193493

Key words

Navigation